본 논문에서는 동물 이미지 분류를위한 작은 데이터 세트를 기반으로 개선 된 심층 학습 방법을 제안한다. 첫째, CNN은 소규모 데이터 세트에 대한 교육 모델을 작성하고 데이터 세트를 사용하여 교육 세트의 데이터 세트를 확장하는 데 사용된다. 둘째, VGG16과 같은 대규모 데이터 세트에 사전 훈련 된 네트워크를 사용하여 작은 데이터 세트의 병목을 추출하여 새로운 교육 데이터 세트 및 테스트 데이터 세트로 두 개의 NumPy 파일에 저장하고, 마지막으로 완전히 연결된 네트워크를 새로운 데이터 세트로 학습한다.
최근 시맨틱 웹의 등장과 발전은 웹 2.0의 발전과 더불어 새로운 웹의 문화를 바꾸어 놓았다. 시맨틱 웹의 적용분야는 다양하지만 그중에서 의미 정보 검색과 다국어 정보 검색 기술을 통한 다국어 지원 번역이 연구 분야로의 필요성이 있다. 기존 기계번역이 번역률에 있어서 가장 큰 한계점은 단어 의미 중의성과 문법적은 오류이다. 따라서 본 논문에서는 시맨틱 웹과 단어 의미 중의성을 해소 시킬 새로운 알고리즘을 제안함으로써 단점을 제거하여 번역률을 향상시켜 모바일에 적용하였다. 모바일에 입력된 신문기사 이미지를 OCR을 통해 텍스트로 변환하고 사전 및 분야 온톨로지와 문장 규칙 추론을 동해 처리 속도 및 정확도 높은 번역시스템을 설계 및 구현하였다.
본 논문에서는 스네이크 알고리즘에서 복잡한 배경으로 인해 어긋난 윤곽선을 개선하는 방법을 제안한다. 스네이크 알고리즘은 능동 윤곽선 모델(active contour model)중 하나로, 사전 정의한 영역에서 시작하여 점진적으로 강한 변화가 감지되는 방향으로 윤곽선을 수정하는 방법이다. 그러나 이러한 방법은 강한 기울기 성분이 나타나는 배경에 취약하고, 대상의 불필요한 영역이 포함되거나, 필요한 영역이 포함되지 않는 문제가 발생한다. 제안하는 방법은 이미지에 원근 변환을 기반으로 한 스네이크 알고리즘을 반복적으로 적용하여 대상의 윤곽선을 온전히 추출한다. 이는 실험 데이터에서 평균 IoU가 약 11.5% 이상 증가한 것을 통해 올바른 윤곽선을 찾는데 효과적인 방법임을 알 수 있다.
요즘 현금카드나 신용카드를 훔치고 비밀번호를 알아내 ATM(현금자동지급기)에서 현금을 인출하는 범죄가 늘고 있는데 범인들은 대부분 선글라스, 안경, 마스크, 모자 등으로 얼굴을 가리고 인출을 함으로 은행의 CCTV는 범인색출에 거의 도움이 되지 않는다. 본 논문에서의 영상처리는 모두 Java언어를 사용하였으며 피부색을 사전 추출하는 과정을 거쳐 구현된 분류기능을 이용해 얼굴의 이목구비들의 위치를 인식하도록 한다. 이는 ATM이용자가 선글라스, 안경, 마스크 등으로 얼굴을 가리면 기기에서 애초에 서비스 받는 것을 불가능 하게 하여, 범죄를 예방할 수 있게 한다. 또한 카드의 사용자 정보와 서비스를 시도했던 시간과 캡쳐 이미지를 저장해 놓음으로써 범인의 인상착의, 알리바이 등을 확인하는데 크게 도움을 주는 ATM 안면 인식 보안 시스템의 가능성을 제안하고자 한다.
최근 드론산업이 발전하면서 다양한 드론 활용방법에 대한 연구와 특허 출원이 진행되고 있다. 드론에서 촬영된 사진은 실종자 수색, 농작물 생육 분석 등 다양한 목적을 위해서 활용되고 있으며, 다양한 분야에서 연구개발이 이루어지고 있다. 사진에 저장되는 정보는 실제 촬영 이미지와 다양한 메타데이터를 포함하고 있으나, 카메라 제조사별로 포함되는 메타데이터의 구성이 상이한 상태이다. 본고에서는 드론에서 촬영된 사진내의 메타데이터를 사전에 정의된 표준 명세를 만족할 수 있도록 메타데이터를 정합하는 응용프로그램을 제시하였다. 본 프로그램을 활용하여 현재 수행중인 DNA+드론기술 개발과제의 참여기업들이 촬영한 드론 사진내의 메타데이터의 표준화를 함으로써, 이를 활용하여 다양한 응용 기술 개발을 담당하는 참여기업들이 표준화된 데이터를 활용하여 보다 용이하게 개발이 가능할 것으로 예상된다.
한국과학기술정보연구원(이하 KISTI)은 지난 13년 간 전사적으로 품질제고전략, 서비스만족전략, 이미지 제고전략 등 3대 고객만족 추진전략을 수립하여 체계적인 "고객만족경영시스템(CSM : Customer Satisfaction Management)"을 구축하고 이를 강화하기 위한 노력을 기울여 왔다. 본 연구의 목적은 순고객추천지수(Net Promoter Score:NPS)를 활용하여 과학기술지식인프라(ScienceON) 정보서비스를 경험한 500명의 의사결정자를 대상으로 과학기술정보서비스에 대한 고객 만족 및 고객충성도를 측정하였다. 특히 연구결과는 정량적인 측정모델(KCSI-ST)을 보완하고 고객만족도 수준에 따라 비추천 고객, 중립 고객, 추천 고객 등을 예측할 수 있는 모델이다. 이와 같은 고객의 긍정적이거나 부정적인 구전으로 급속도로 노출되는 환경에서 고객의 만족도를 분석함으로써 기관의 주요 서비스별 고객을 확보하는데 사전 예측자료로 활용될 수 있다고 본다.
최근 몇 년 간 딥러닝 기반 모델의 규모와 복잡성이 증가하면서 강력하고, 높은 정확도가 확보되지만 많은 양의 계산 자원과 메모리가 필요하기 때문에 모바일 장치나 임베디드 시스템과 같은 리소스가 제한된 환경에서의 배포에 제약사항이 생긴다. 복잡한 딥러닝 모델의 배포 및 운영 시 요구되는 고성능 컴퓨터 자원의 문제점을 해결하고자 사전 학습된 대규모 모델로부터 가벼운 모델을 학습시키는 지식증류 기법이 제안되었다. 하지만 현대 딥러닝 기반 모델은 높은 정확도 대비 훈련 데이터에 과적합 되는 과잉 확신(overconfidence) 문제에 대한 대책이 필요하다. 본 논문은 효율적인 경량화를 위한 미리 학습된 모델의 과잉 확신을 방지하고자 초점 손실(focal loss)을 이용한 모델 보정 기법을 언급하며, 다양한 손실 함수 변형에 따라서 지식증류의 성능이 어떻게 변화하는지에 대해 탐구하고자 한다.
본 연구는 인물사진의 평가 요소들과 감상자들의 일반적인 선호도와의 관계를 통하여, 감상자 중심의 제품 개발 및 설계를 위한 이미지 측정 프로그램 모형을 개발하는 것을 목적으로 한다. 사전 연구에서 개발된 프로그램을 분석하여 개선을 필요로 하는 항목과 이미지 평가 시에 필수적으로 포함해야하는 사항을 신규 항목으로 추가하였다. 본 연구에서는 첫 번째 단계로 얼굴의 초점을 확인하였고, 객관적, 주관적 화질 평가 항목으로 나누어 인물사진을 평가하였다. 객관적 평가 항목에는 RSC 콘트라스트, 다이내믹 레인지를 선정하였고, 통계학적 분석방법으로 각 이미지의 수치를 평가할 수 있었다. 주관적 평가 항목에는 얼굴의 노출, 구도, 위치, 비율 그리고 아웃포커스를 선정하였다. 또한 새로운 얼굴 인식 알고리즘을 통하여 사람의 감정을 판단할 수 있어, 이미지 관련 제조사가 사람의 감정 콘텐츠로 인물사진을 분석할 수 있는 정보를 제시하였다. 본 연구에서 개발된 프로그램은 인물사진을 평가할 때 고려해야하는 평가 항목들을 정량적, 정성적으로 규합하였다. 이를 통하여, 일반인 사용자들의 필요에 보다 부합할 수 있는 제품을 만들기 위한 평가 모형을 개발하는데 필수적인 데이터로 활용가능하다.
이 연구의 목적은 학습용 에이전트의 사실성 수준과 학습자의 전문성 수준이 학습 성취 및 에이전트에 대한 의인화 효과에 미치는 영향을 검증하기 위한 것이다. 대학생 68명(남학생= 19명, 여학생 = 49명)이 실험에 참여했으며, 전문성 수준은 사전검사의 평균을 기준으로 상위 집단과 하위 집단으로 구분하였다. 사실성 수준 은 에이전트 이미지를 단순화하는 정도에 따라서 구분하였다. 이 연구의 종속변수는 학습 성취와 의인화 효과에 대한 지각점수이다. 의인화 효과는 학습 촉진, 신뢰성, 인간다움, 학습 개입으로 구분하였다. 실험 결과에 따르면, 학습 성취에서는 에이전트 사실성 수준에 의한 유의미한 차이가 없었다. 그러나 의인화 효과에 대 한 설문에서는 학습 개입을 제외한 나머지 모든 범주에서 유의미한 상호작용이 나타났다. 단순 주 효과 분석에 따르면, 이런 상호작용의 효과는 전문성 수준이 높은 학습자가 정밀한 이미지의 에이전트를 제공받았을때 의인화 효과가 올라갔다. 이 결과는 학습자의 전문성 수준에 따라서 의인화 효과가 달라진다는 것을 보여 준다. 또한 전문성 수준이 높은 학습자는 에이전트에 대한 인지적 평가를 할 수 있었음을 의미한다. 전문성 수준이 높은 학습자에게는 사실성 수준이 높은 에이전트를 제공하는 것이 긍정적인 효과를 도출하였다.
현재 대부분의 객체 탐지 알고리즘은 RGB 영상을 기반으로 연구되고 있다. 하지만 RGB 카메라는 물체에서 반사되는 빛을 받아들여 영상을 생성하기 때문에, 물체에서 나오는 빛이 적거나 산란이 되는 야간 또는 안개가 끼는 환경에서는 물체의 정보가 잘 표현되는 영상 취득이 어려워 객체 탐지의 정확도가 떨어진다. 그에 반해 IR(열 적외선, Infra-Red) 영상은 열 센서로 이미지를 생성하기 때문에 RGB 영상에 비해 정확한 물체의 정보를 표현할 수 있다. 따라서 본 논문에서는 이러한 이미지 특성 차이에 따른 객체 탐지 성능을 비교하고자 하며, RGB와 IR 영상의 압축률에 따른 객체 탐지를 수행하고, 결과를 비교 분석 하고자 한다. 실험에 사용된 영상은 첨단운전자 보조 시스템(ADAS) 연구용 데이터 세트인 Free FLIR Thermal 데이터 세트 중 야간에 촬영된 RGB 영상과 IR 영상을 사용하였으며, 기존 RGB 영상 기반으로 사전 학습된 신경망과 FLIR Thermal 데이터 세트 내 RGB 영상과 IR 영상을 일부 골라 재학습한 신경망을 이용하여 객체 탐지를 수행하였다. 실험 결과 RGB 기반으로 사전 학습된 신경망과 재학습한 신경망 모두 IR 영상 기반 객체 탐지 성능이 RGB 영상 기반 성능보다 월등한 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.