• 제목/요약/키워드: 이미지 데이터 셋

검색결과 303건 처리시간 0.026초

미소 픽셀을 갖는 비행 객체 인식을 위한 데이터베이스 구축 및 관리시스템 연구 (Database Generation and Management System for Small-pixelized Airborne Target Recognition)

  • 이호섭;신희민;심현철;조성욱
    • 항공우주시스템공학회지
    • /
    • 제16권5호
    • /
    • pp.70-77
    • /
    • 2022
  • 본 논문에서, 데이터베이스 생성 및 관리 시스템은 미소 픽셀 공중 표적 인식을 위해 제안된다. 제안된 시스템은 1)비행 테스트 비디오 프레임에 의한 직접 이미지 추출, 2) 자동 이미지 보관, 3) 이미지 데이터 레이블링 및 메타 데이터 주석, 4) 컬러 채널 변환, 5) HOG/LBP 기반 소화소 대상 증강 이미지 데이터 생성의 다섯가지 주요 기능으로 구성된다. 제안하는 프로그램은 파이썬 기반의 PyQt5와 OpenCV를 이용하여 구성하였고 공중 표적 인식을 위한 이미지 데이터셋은 제안한 시스템을 이용해 생성했으며 비행 실험으로 부터 수집된 영상을 입력영상으로 사용하였다.

손가락 방향 감지를 위한 이미지 데이터셋 설계 및 구축 (Design and Construction of Image Dataset for Finger Direction Detection)

  • 강기덕;이동명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.31-33
    • /
    • 2021
  • 본 논문에서는 욜로(You Only Look Once, YOLO) 기반의 손가락 방향 감지 알고리즘을 이용하여 손가락 방향 감지 정확도 향상을 위한 데이터셋을 설계 및 구축하였다. 손가락 방향 감지 성능 향상을 위해 약 200개의 손가락 이미지 데이터셋을 학습하였으며, 손바닥의 각도에 따른 손가락 방향 감지 정확도를 확인하기 위해 서로 다른 각도의 비교군을 각각 50개씩 구성하여 실험하였다. 실험결과, 수평기준 90°도에 근접한 방향에 위치한 손가락 방향 감지 정확도는 다른 각도의 경우보다 더 높게 나옴을 확인하였다.

  • PDF

CT 이미지 세그멘테이션을 위한 3D 의료 영상 데이터 증강 기법 (3D Medical Image Data Augmentation for CT Image Segmentation)

  • 고성현;양희규;김문성;추현승
    • 인터넷정보학회논문지
    • /
    • 제24권4호
    • /
    • pp.85-92
    • /
    • 2023
  • X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI)과 같은 의료데이터에서 딥러닝을 활용해 질병 유무 판별 태스크와 같은 문제를 해결하려는 시도가 활발하다. 대부분의 데이터 기반 딥러닝 문제들은 높은 정확도 달성과 정답과 비교하는 성능평가의 활용을 위해 지도학습기법을 사용해야 한다. 지도학습에는 다량의 이미지와 레이블 세트가 필요하지만, 학습에 충분한 양의 의료 이미지 데이터를 얻기는 어렵다. 다양한 데이터 증강 기법을 통해 적은 양의 의료이미지와 레이블 세트로 지도학습 기반 모델의 과소적합 문제를 극복할 수 있다. 본 연구는 딥러닝 기반 갈비뼈 골절 세그멘테이션 모델의 성능 향상과 효과적인 좌우 반전, 회전, 스케일링 등의 데이터 증강 기법을 탐색한다. 좌우 반전과 30° 회전, 60° 회전으로 증강한 데이터셋은 모델 성능 향상에 기여하지만, 90° 회전 및 ⨯0.5 스케일링은 모델 성능을 저하한다. 이는 데이터셋 및 태스크에 따라 적절한 데이터 증강 기법의 사용이 필요함을 나타낸다.

인공지능 기반 구글넷 딥러닝과 IoT를 이용한 의류 분류 (Classification of Clothing Using Googlenet Deep Learning and IoT based on Artificial Intelligence)

  • 노순국
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.41-45
    • /
    • 2020
  • 최근 4차 산업혁명 관련 IT기술 중에서 머신러닝과 딥러닝으로 대표되는 인공지능과 사물인터넷은 다양한 연구를 통해 여러 분야에서 우리 실생활에 적용되고 있다. 본 논문에서는 사물인터넷과 객체인식 기술을 활용한 인공지능을 적용하여 의류를 분류하고자 한다. 이를 위해 이미지 데이터셋은 웹캠과 라즈베리파이를 이용하여 의류를 촬영하고, 촬영된 이미지 데이터를 전이학습된 컨벌루션 뉴럴 네트워크 인공지능망인 구글넷에 적용하였다. 의류 이미지 데이터셋은 온전한 이미지 900개와 손상이 있는 이미지 900 그리고 총 1800개를 가지고 상하의 2개의 카테고리로 분류하였다. 분류 측정 결과는 온전한 의류 이미지에서는 약 97.78%의 정확도를 보였다. 결론적으로 이러한 측정결과와 향후 더 많은 이미지 데이터의 보완을 통해 사물인터넷 기반 플랫폼상에서 인공지능망을 활용한 여타 사물들의 객체 인식에 대한 적용 가능성을 확인하였다.

AI 초개인화 맞춤형 피부진단을 위한 한국인 피부상태 측정 데이터 구축 (Constructing a Dataset for Assessing Skin Condition in Koreans for AI-Personalized Customized Skin Diagnosis)

  • 이정호;양주열 ;최민서;최상일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.698-700
    • /
    • 2023
  • 최근 들어, 미용 상품을 선택하기 전에 자신의 피부 타입과 상태를 정확히 파악하고 맞춤형 상품을 선택하고자 하는 수요가 증가하고 있다. 이에 따라 피부 상태 측정을 위한 기술적 요소의 중요성이 더욱 두드러지고 있다. 그러나 현재까지 피부 상태 측정을 위한 데이터셋이 한국인을 대상으로 측정한 데이터셋이 없는 실정이다. 본 연구에서는 한국인의 피부 상태를 정밀하게 분석하기 위해 고해상도 디지털 카메라로 촬영된 이미지, 정밀 피부측정 장비를 활용하여 측정한 정밀 값, 그리고 피부과 전문의가 진단한 피부상태 진단 등급 데이트를 통합하여 제공을 한다. 추후 제작한 데이터셋을 활용하여 개인 맞춤형 미용상품 추천과 개발 등 다양한 분야에 활용하고자 한다.

랜드마크 이미지 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안 연구 (A Study on Designing Metadata Standard for Building AI Training Dataset of Landmark Images)

  • 김진묵
    • 한국문헌정보학회지
    • /
    • 제54권2호
    • /
    • pp.419-434
    • /
    • 2020
  • 본 연구의 목적은 랜드마크 이미지의 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안을 제시하기 위함이다. 이를 위해, 이미지 검색시스템의 종류와 각각의 색인 방식에 관한 최신 기술 현황을 포괄적으로 조사하여 분석하고, AI 머신러닝을 적용한 랜드마크 인식에 필수적인 학습용 공개 데이터셋과 이미지 객체 인식에 관한 기계학습 도구를 조사하였다. 이를 통해, 랜드마크 이미지 AI 학습용 데이터에 최적화된 메타데이터 요소를 선정하고 각각의 요소에 대한 입력 데이터를 정의하였다. 결론 및 제언에서는 랜드마크 인식을 활용한 추천시스템을 포함한 응용서비스 개발 방안을 논의하였다.

딥러닝을 이용한 손검출에 관한 연구 (A Study on Hand Detection using Deep Learning)

  • 박명숙;김상훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.471-473
    • /
    • 2018
  • 딥러닝은 이미지 분류 및 객체 검출과 같은 여러 컴퓨터 비전 관련 작업에 성공적으로 사용되었다. 손 검출은 인간 컴퓨터 상호작용 분야에서 손 분류 및 손 동작 인식을 위한 매우 중요한 부분이며 딥러닝을 사용하여 시도되었다. 본 연구에서는 손 데이터 셋을 이용하여 컨볼루션 신경망을 훈련시킨 다음 학습된 특징을 시각화하고, CNN 아키텍처와 손 데이터 셋의 결과를 각각 살펴보며 손 검출에 대한 이해를 제공한다.

차분 영상을 이용한 객체 추적 방법 (Object Tracking Method using Difference Images)

  • 조진환;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.165-168
    • /
    • 2021
  • 최근 딥러닝 환경의 확산으로 인하여 데이터셋 생성의 중요성이 높아지고 있다. 본 논문에서는 효율적인 데이터셋 생성을 위하여 객체의 회전 영상을 촬영하고 해당 영상에서의 객체 추적을 수행하는 방법을 설계하고 구현하고자 한다. 본 논문에서 구현하는 방법은 객체의 여러 각도를 촬영하기 위하여 객체를 회전시켜 영상 데이터를 획득하고 해당 영상에서의 배경 제거 및 차분 영상 처리 기법을 통하여 객체를 검출하고 추적하여 라벨링을 수행하여 사용자가 현재 프레임에서의 객체 추적 결과를 모니터링할 수 있도록 화면으로 보여주며, 추후 데이터셋으로 활용하기 위하여 이미지 내에서의 객체 위치 데이터를 반환하도록 구현하였다.

  • PDF

깊은 인공 신경망 이미지 기술자를 활용하는 멤버 분류 (Member Verification with Deep Learning-based Image Descriptors)

  • 장영균;이석희;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.36-39
    • /
    • 2020
  • 최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.

  • PDF

임의 차원 데이터 대응 Dynamic RNN-CNN 멀웨어 분류기 (Dynamic RNN-CNN malware classifier correspond with Random Dimension Input Data)

  • 임근영;조영복
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.533-539
    • /
    • 2019
  • 본 연구는 본 연구는 Microsoft Malware Classification Challenge 데이터 셋을 사용해 임의의 길이 입력 데이터에 대응할 수 있는 멀웨어 분류 모델을 제안한다. 우리는 기존 연구의 멜웨어 데이터를 이미지화 시키는 것을 기반으로 한다. 제안 모델은 멀웨어 데이터가 큰 경우는 많은 이미지를 생성하고, 작은 데이터는 적은 이미지를 생성한다. 생성된 이미지를 시계열 데이터로 Dynamic RNN으로 학습시킨다. RNN의 출력 값은 Attention 기법을 응용해 가장 가중치가 높은 출력만 사용하고, RNN 출력값을 다시 Residual CNN으로 학습시켜 최종적으로 멀웨어를 분류한다. 제안모델을 실험한 결과 검증 데이터 셋에서 Micro-average F1 score 92%를 기록하였다. 실험 결과 특별한 특징 추출 및 차원 축소 없이 임의 길이의 데이터를 학습 및 분류할 수 있는 모델의 성능을 검증할 수 있었다.