• Title/Summary/Keyword: 이미지 기계 학습

Search Result 172, Processing Time 0.025 seconds

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

DNA (Data, Network, AI) Based Intelligent Information Technology (DNA (Data, Network, AI) 기반 지능형 정보 기술)

  • Youn, Joosang;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.247-249
    • /
    • 2020
  • In the era of the 4th industrial revolution, the demand for convergence between ICT technologies is increasing in various fields. Accordingly, a new term that combines data, network, and artificial intelligence technology, DNA (Data, Network, AI) is in use. and has recently become a hot topic. DNA has various potential technology to be able to develop intelligent application in the real world. Therefore, this paper introduces the reviewed papers on the service image placement mechanism based on the logical fog network, the mobility support scheme based on machine learning for Industrial wireless sensor network, the prediction of the following BCI performance by means of spectral EEG characteristics, the warning classification method based on artificial neural network using topics of source code and natural language processing model for data visualization interaction with chatbot, related on DNA technology.

A Real-time Electronic Attendance-absence Recording System using Face Detection and Face Recognition (얼굴 검출 및 인식 기술을 이용한 실시간 전자 출결 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1524-1530
    • /
    • 2016
  • Recently, research about an electronic attendance-absence recording system has been actively carried out using smart devices. Using an electronic attendance-absence recording system, professors can check their students' attendance on a real-time basis and manage their attendance records. In this paper, we proposed a real-time electronic attendance-absence recording system using face detection and face recognition based on web application. It can solve the spatial, temporal, cost issues belong to electronic attendance-absence recording system using AIDC(Automatic Identification and Data Capture). A proposed system is running on web server and made by HTML5(Hyper Text Markup Language ver.5). So professor connect to server using mobile web browser on mobile device and real-time manage electronic attendance-absence recording with real-time send or receive image data. In addition, the proposed system has an advantage capable of installation and operation, regardless of the operating system because it operates based on the Python flask framework.

Driver Assistance System By the Image Based Behavior Pattern Recognition (영상기반 행동패턴 인식에 의한 운전자 보조시스템)

  • Kim, Sangwon;Kim, Jungkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.123-129
    • /
    • 2014
  • In accordance with the development of various convergence devices, cameras are being used in many types of the systems such as security system, driver assistance device and so on, and a lot of people are exposed to these system. Therefore the system should be able to recognize the human behavior and support some useful functions with the information that is obtained from detected human behavior. In this paper we use a machine learning approach based on 2D image and propose the human behavior pattern recognition methods. The proposed methods can provide valuable information to support some useful function to user based on the recognized human behavior. First proposed one is "phone call behavior" recognition. If a camera of the black box, which is focused on driver in a car, recognize phone call pose, it can give a warning to driver for safe driving. The second one is "looking ahead" recognition for driving safety where we propose the decision rule and method to decide whether the driver is looking ahead or not. This paper also shows usefulness of proposed recognition methods with some experiment results in real time.

FPGA Design of SVM Classifier for Real Time Image Processing (실시간 영상처리를 위한 SVM 분류기의 FPGA 구현)

  • Na, Won-Seob;Han, Sung-Woo;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.209-219
    • /
    • 2016
  • SVM is a machine learning method used for image processing. It is well known for its high classification performance. We have to perform multiple MAC operations in order to use SVM for image classification. However, if the resolution of the target image or the number of classification cases increases, the execution time of SVM also increases, which makes it difficult to be performed in real-time applications. In this paper, we propose an hardware architecture which enables real-time applications using SVM classification. We used parallel architecture to simultaneously calculate MAC operations, and also designed the system for several feature extractors for compatibility. RBF kernel was used for hardware implemenation, and the exponent calculation formular included in the kernel was modified to enable fixed point modelling. Experimental results for the system, when implemented in Xilinx ZC-706 evaluation board, show that it can process 60.46 fps for $1360{\times}800$ resolution at 100MHz clock frequency.

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.

Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning (기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발)

  • Lee, Chung-Sub;Lim, Dong-Wook;Noh, Si-Hyeong;Kim, Tae-Hoon;Park, Sung-Bin;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.11
    • /
    • pp.305-310
    • /
    • 2021
  • Artificial intelligence technology in the medical field initially focused on analysis and algorithm development, but it is gradually changing to web application development for service as a product. This paper describes a Urinary Stone segmentation model in abdominal CT images and an artificial intelligence web application based on it. To implement this, a model was developed using U-Net, a fully-convolutional network-based model of the end-to-end method proposed for the purpose of image segmentation in the medical imaging field. And for web service development, it was developed based on AWS cloud using a Python-based micro web framework called Flask. Finally, the result predicted by the urolithiasis segmentation model by model serving is shown as the result of performing the AI web application service. We expect that our proposed AI web application service will be utilized for screening test.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF