• Title/Summary/Keyword: 이미지정보

Search Result 5,869, Processing Time 0.032 seconds

Image of Artificial Intelligence of Elementary Students by using Semantic Differential Scale (의미분별법을 이용한 초등학생의 인공지능에 대한 이미지)

  • Ryu, Miyoung;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, we analyzed the image of artificial intelligence recognized by elementary students using semantic differential scale. First, we extracted 23 pairs of image adjectives related to perception of artificial intelligence. Adjectives were classified into three types related to recognition, emotion and ability and 827 elementary students were examined. Image factors were classified into four factors: convenience, technological progress, human-friendliness, and concern. As a result, they showed a clear image that artificial intelligence is clever, new, and complex but exciting. In comparison with variables, female students, coding experience and older students thought that artificial intelligence was more human-friendly and technological progressive.

An Edge Detection Technique for Performance Improvement of eGAN (eGAN 모델의 성능개선을 위한 에지 검출 기법)

  • Lee, Cho Youn;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2021
  • GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.

Clipart Image Retrieval System using Shape Information (모양 정보를 이용한 클립아트 이미지 검색 시스템)

  • Cheong, Seong-Il;Kim, Seung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.116-125
    • /
    • 2002
  • This paper presented a method of extracting shape information from a clipart image and then measured the similarity between clipart images using the extracted shape information. The results indicated that the outlines of the extracted clipart images were clearer that those of the original images. Previous methods of extracting shape information could be classified into outline-based methods and region-based methods. Included in the former category, the proposed method expressed the convex and concave aspects of an outline using the ratio of a rectangle. Accordingly, the proposed method was superior in expressing shape information than previous outline-based feature methods.

MPEG-7 Based Web Image Indexing and Searching (MPEG-7 기반 웹 이미지 색인 및 검색)

  • Lim, Jae-Hyoung;Kim, Mun-Churl;Kim, Jin-Woong;Hyun, Soon-J.
    • Annual Conference of KIPS
    • /
    • 2000.10b
    • /
    • pp.1285-1288
    • /
    • 2000
  • 인터넷의 양적 질적 성장을 통해 인터넷상에 존재하는 웹 문서의 숫자는 엄청난 속도로 증가하여 왔다. 이러한 방대한 웹 문서를 대상으로 한 검색 방법은, 지금까지 일반적으로 텍스트 기반의 방법이 주류를 이루어 왔다. 그러나 웹 문서는 멀티미디어 형태로 존재하며 텍스트, 이미지, 동영상, 컴퓨터 그래픽 둥 다양한 미디어들로 구성되어 있다. 본 논문에서는 인터넷에 존재하는 웹 문서를 대상으로 내용 기반 이미지 검색방법을 제시한다. 내용기반 웹 이미지 검색 시스템은 웹 상의 텍스트 기반의 기존 상용 검색엔진을 이용하여 주요 검색어에 대한 이미지를 수집하는 웹 이미지 수집기와 수집된 이미지에 대해 MPEG-7 비주얼 기술자를 이용하여 데이터베이스에 색인하는 데이터베이스 불리기(population), 그리고 내용 기반 이미지 검색엔진으로 구성된다. 사용자는 장르, 주제 및 주요단어에 의해 분류되어 데이터베이스에 색인된 웹 이미지를 대상으로 검색이 가능하다. 이는 웹 문서를 직접 대상으로 한 특정 단어에 대한 내용 기반 이미지 검색이 가능하며 검색이 데이터베이스를 대상으로 이루어지기 때문에 빠른 검색 속도를 얻을 수 있으며, 또한 기존 웹에서 제공되는 텍스트 기반의 상용 검색엔진을 이용하여 주요단어에 대한 웹 이미지를 수집하여 색인하기 때문에 별도의 텍스트 검색엔진 구현을 필요로 하지 않는다.

  • PDF

MIRIS에서 적외선 관측용 이미지 센서의 제어를 위한 FPGA 개발

  • Bang, Seung-Cheol;Lee, Dae-Hui;Wi, Seok-O;Ga, Neung-Hyeon;Cha, Sang-Muk;Park, Yeong-Sik;Nam, Uk-Won;Jeong, Ung-Seop;Lee, Chang-Hui;Mun, Bong-Gon;Park, Seong-Jun;Lee, Deok-Haeng;Pyo, Jeong-Hyeon;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.2-25.2
    • /
    • 2010
  • MIRIS는 과학기술위성 3호의 주 탑제체로 우주 및 지구의 적외선 관측을 위한 두 개의 카메라 시스템을 가지고 있으며 이를 위한 적외선 검출용 이미지 센서가 각각 장착되어 있다. 이미지 센서를 통해 검출된 이미지 데이터를 읽기 위해 고속의 데이터 처리가 요구되어 FPGA 구성방식으로 전용 제어기를 구성하였다. 우주 및 지구의 적외선 관측용 이미지 센서는 구성 및 동작방법이 달라 요구기능을 만족하는 각각의 전용 이미지 센서 제어기를 개발했다. FPGA를 이용한 이미지 센서 제어기에는 검출된 이미지를 읽기위한 센서 제어 신호발생기, 아날로그 이미지 신호를 디지털 정보로 변환하는 ADC 제어용 신호 발생기, ADC의 출력 신호를 고속의 직렬 통신선로로 출력 하는 기능 외에 동작 모드 및 동작 상태 입력용 DSP 인터페이스, 고속의 직렬 통신 선로에 MIRIS 상태정보 삽입 기능, 제어기의 기능을 원격지에서 확인 할 수 있는 이미지 패턴 생성기능 등을 가지고 있다. 특히, 이미지를 읽기 위한 동작 시에만 클록 주파수를 인가하는 방법으로 FPGA 내부 회로를 구성하여 전류의 소모량을 최소화 하였다.

  • PDF

Couple Matching Platform through Style Analysis (스타일 분석을 통한 커플 매칭 플랫폼)

  • Choe, Hyeong Rak;Jo, Sung un;Kim, Dong Ha;Moon, Jae Hyun
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.868-871
    • /
    • 2019
  • 본연구는 커플들의 이미지 빅 데이터를 분석하여 각각 얼굴과 패션에 따라 유사한 유형 끼리 클러스터링 하여 새로운 사람 이미지가 주어졌을 때 해당 사람이 어느 유형에 속하는지 찾아내고 해당 유형의 사람들은 어떤 유형의 이성과 잘 맞는지 찾아 추천해주는 플랫폼이다. 빅 데이터를 수집하기 위하여 SNS상에서 커플들의 이미지를 크롤링하여 저장한다. 수집된 커플들의 이미지를 AI 머신 러닝으로 나이, 성별을 분석하여 미리 설정한 나이대의 이성 커플들의 이미지 만을 추려내서 각각 남, 여의 이미지를 분리하여 저장한다. 해당 이미지들로 비슷한 얼굴, 패션 유형의 사람들을 같은 클러스터로 모으고 CNN 으로 학습 시켜서 새로운 이미지가 들어올 경우 효율적으로 해당 이미지가 어느 클러스터에 속하는지 찾아낼 수 있도록 한다. 특정 이미지가 속하는 클러스터를 찾아내면 해당 클러스터에 속하는 사람들의 연인들이 어느 클러스터에 가장 많이 포함되어 있는지 찾아서 해당 클러스터 유형의 이성을 추천해준다. 웹과 어플리케이션으로 이루어진 플랫폼 서비스이며, 커플 매칭 기능 뿐만 아니라 매칭된 회원 간 연락 기능, 실제 커플의 이미지로 두 사람의 매칭도 확인 등의 부가적 기능 또한 인공 지능 서비스로 제공된다.

Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image (이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화)

  • Kim, Donghui;Kim, Soo-Kyun;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

CEO's Twitter Message and Image: Exploring CEO's Twitter Messages and Followers (CEO의 트위터 메시지와 이미지 -CEO 트위터의 메시지 유형과 팔로워의 평가를 중심으로)

  • Cho, Seung-Ho;Hong, Sook-Yeong
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.83-92
    • /
    • 2012
  • The purpose of this current study is to examine CEO image presented in messages of CEO twitter and perceived by CEO twit followers. To conduct this study, we selected two CEOs, ChanJin Lee and HyeonMyeong Pyo who are top ranking based on a number of followers in Korea. We investigated each CEO's Tweet, RT, Reply, and RT+Reply using three CEO image factors: CEO personality, CEO quality, and CEO outward characteristics. Also, followers were asked what image mostly they have based on those three image factors. The results showed that for ChanJin Lee, CEO quality were more presented in twitter than CEO personality and CEO outward characteristics, and CEO Lee's followers also perceived that Lee has more CEO quality image than others. Pyo, HyeonMyeong has CEO quality image in twitter than others, and his followers thought that he had more CEO outward characteristics image than others.

An Development of Image Retrieval Model based on Image2Vec using GAN (Generative Adversarial Network를 활용한 Image2Vec기반 이미지 검색 모델 개발)

  • Jo, Jaechoon;Lee, Chanhee;Lee, Dongyub;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.301-307
    • /
    • 2018
  • The most of the IR focus on the method for searching the document, so the keyword-based IR system is not able to reflect the feature information of the image. In order to overcome these limitations, we have developed a system that can search similar images based on the vector information of images, and it can search for similar images based on sketches. The proposed system uses the GAN to up sample the sketch to the image level, convert the image to the vector through the CNN, and then retrieve the similar image using the vector space model. The model was learned using fashion image and the image retrieval system was developed. As a result, the result is showed meaningful performance.

A general-purpose model capable of image captioning in Korean and Englishand a method to generate text suitable for the purpose (한국어 및 영어 이미지 캡션이 가능한 범용적 모델 및 목적에 맞는 텍스트를 생성해주는 기법)

  • Cho, Su Hyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1111-1120
    • /
    • 2022
  • Image Capturing is a matter of viewing images and describing images in language. The problem is an important problem that can be solved by keeping, understanding, and bringing together two areas of image processing and natural language processing. In addition, by automatically recognizing and describing images in text, images can be converted into text and then into speech for visually impaired people to help them understand their surroundings, and important issues such as image search, art therapy, sports commentary, and real-time traffic information commentary. So far, the image captioning research approach focuses solely on recognizing and texturing images. However, various environments in reality must be considered for practical use, as well as being able to provide image descriptions for the intended purpose. In this work, we limit the universally available Korean and English image captioning models and text generation techniques for the purpose of image captioning.