Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.530-531
/
2020
최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.14-16
/
2014
가상 데스크탑 시스템은 단일 물리적 서버상에 가상화 기술을 사용하여 다수의 가상 머신을 실행하고, 이를 네트워크로 연결된 클라이언트에서 사용하는 기술이다. 가상 데스크탑에는 저장장치의 역할을 하는 가상 데스크탑 이미지가 연결되며, 본 이미지에는 운영체제 및 필요한 응용 프로그램이 설치되어 배포된다. 따라서, 새로운 가상 데스크탑을 생성할 때 가상 데스크탑 이미지를 함께 생성해야 하며, 이는 저장장치를 사용한 작업으로 시간이 많이 소요되는 작업이다. 본 논문에서는 이미지 풀을 사용한 빠른 가상 데스크탑 생성 방안을 제안한다. 이미지 풀은 일정 수의 가상 데스크탑 이미지를 포함하고 있으며, 이미지 준비기는 이미지 풀에 있는 이미지의 개수가 일정하게 유지되도록 골든 이미지에서 복사해오는 역할을 담당한다. 가상 데스크탑 생성시, 이미지 풀에서 필요한 이미지를 지연시간 없이 바로 가져옴으로써, 가상 데스크탑 생성에 소요되는 시간을 감소시킬 수 있다.
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.109-114
/
2021
GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.
본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.
본 논문에서는 회화적 렌더링에서 칼라변환을 이용한 브러쉬 스트로크의 생성에 관한 새로운 알고리즘을 제안한다. 본 논문의 브러쉬 스트로크 생성을 위한 전체적인 구성은 다음과 같다. 첫째, 두 장의 사진(한 장의 소스 이미지와 한 장의 참조 이미지)을 입력으로 하여 칼라 변환 이론을 적용하여 색상 테이블이 바뀐 새로운 이미지를 생성한다. 이 방법은 소스 이미지의 칼라 분포 형태를 창조 이미지의 칼라 분포 형태로 변환하기 위해, 선형 히스토그램 매칭이라 불리는, 간단한 통계학적 방법을 이용한다. 둘째, 가우시안 블러링과 소벨 필터를 이용하여 에지를 검출한다. 검출된 에지는 브러쉬 스트로크 렌더링 시 에지 부분에서 스트로크를 클리핑 함으로써 이미지의 윤곽선 보존을 위해 사용된다. 셋째, 브러쉬 스트로크의 방향을 결정하기 위한 방향맵을 생성한다. 방향맵은 입력 영상에 대한 영역 분할 및 병합을 토대로 만들어진다. 영역별 각 픽셀들에 대해 이미지 그래디언트에 기초한 일정한 방향을 부여함으로써 방향맵을 구성한다. 넷째, 구성된 방향맵을 참조하여 브러쉬 스트로크 생성의 기초가 되는 베지어 곡선(Bezier Curve)의 제어점(Control point)을 설정한다. 실제 회화작품에서 사용되는 브러쉬 스트로크는 일반적으로 곡선의 형태를 이루므로 곡선 표현이 가능한 베지어 곡선을 이용하여 브러쉬 스트로크를 표현하였다. 마지막으로, 생성된 브러쉬 스트로크를 에지부문에서 클리핑하고 배경색을 참조하여 블렌딩하거나 퐁 조명 모델을 이용하여 이미지에 적용하게 된다.
This study deals with a method of combining image generation using Semi Supervised Learning based on GAN (Generative Adversarial Network) and image classification using ResNet50. Through this, a new approach was proposed to obtain more accurate and diverse results by integrating image generation and classification. The generator and discriminator are trained to distinguish generated images from actual images, and image classification is performed using ResNet50. In the experimental results, it was confirmed that the quality of the generated images changes depending on the epoch, and through this, we aim to improve the accuracy of industrial accident prediction. In addition, we would like to present an efficient method to improve the quality of image generation and increase the accuracy of image classification through the combination of GAN and ResNet50.
The Journal of the Convergence on Culture Technology
/
v.10
no.2
/
pp.343-348
/
2024
Today, AI image creation programs are optimized for various and specialized purposes such as fashion product advertising, customized fashion style suggestions, and design development, and are actively utilized in the fashion industry. Meanwhile, color is a powerful formative element and plays an important role in expressing images for suggesting products or fashion styles. This study seeks to expand understanding of the use of Midjourney by identifying the characteristics of color combinations that appear in clothing images created using Midjourney among AI image creation tools. The results of this study are as follows. First, the initial image created in Midjourney reflects the existing image color used to create the image more than the color specified in the command. Second, the color combinations that appear in the clothes of the images created in Midjourney are divided into separate and mixed colors. The ratio of colors expressed in a separate color scheme is affected by the color order specified in the command. The number of colors combined in a mixed color scheme appears as a combination of fewer colors than the total number of colors of clothing in the existing image used to create the image in Midjourney and the number of colors specified in the command. Third, caution is needed because changes in background color can affect the user's color perception of the clothes in the image and the formation of the costume image. It is hoped that the results of this study will be helpful in fashion design education and practice.
Automatic generation of captions for an image is a very difficult task, due to the necessity of computer vision and natural language processing technologies. However, this task has many important applications, such as early childhood education, image retrieval, and navigation for blind. In this paper, we describe a Recurrent Neural Network (RNN) model for generating image captions, which takes image features extracted from a Convolutional Neural Network (CNN). We demonstrate that our models produce state of the art results in image caption generation experiments on the Flickr 8K, Flickr 30K, and MS COCO datasets.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.459-461
/
2012
일반적으로 같은 장면을 찍은 여러 장의 이미지를 이용하여 파노라마를 생성하려는 경우에도 각 이미지 사이에는 많은 기하학적 제약이 존재하기 때문에 이미지들간의 관계를 단 하나의 호모그래피로 나타낼 수 없다. 하지만 현존하는 대부분의 파노라마 생성 알고리즘은 하나의 호모그래피를 이용하여 파노라마 이미지를 생성하는 방법을 이용하기 때문에 여러 가지 기하학적 제약을 제대로 나타낼 수 없다. 따라서 이러한 알고리즘을 이용한 파노라마의 결과 이미지는 많은 왜곡과 부정합을 포함하게 된다. 본 논문에서 우리는 이러한 문제를 해결하기 위하여 여러 개의 호모그래피를 생성하고 합성하여 파노라마 이미지를 생성하는 방법을 제안한다. 제안하는 방법을 통하여 기존 파노라마 생성 알고리즘에서 나타난 많은 왜곡과 부정합을 줄일 수 있으며 호모그래피 개수도 자동으로 판별하여 주기 때문에 사용자의 입력을 필요로 하지 않는다.
Kim, Hyo-Won;Ki, Hyun-Woo;Lee, Ho-Hyun;Oh, Kyoung-Su
한국HCI학회:학술대회논문집
/
2007.02c
/
pp.170-175
/
2007
영상 재투영이란, 깊이 맵을 투영하여 임의의 시점에서 본 이미지를 생성해내는 기법을 말한다. 기존의 CPU를 이용한 영상 재투영 기법들의 가장 큰 단점은 CPU와 GPU 간의 데이터 복사가 일어나고 재투영 연산 자체의 속도가 느리기 때문에 실시간 렌더링이 불가능 하다는 것이다. 따라서 본 논문에서는 GPU를 이용하여 영상 재투영을 구현하고 실시간에 이미지를 렌더링하는 기법을 소개한다. 우리의 기법은 입력으로 참조 이미지와 해당 이미지의 깊이 맵이 주어졌을 때, 임의의 시점에서 보이는 새로운 이미지를 실시간으로 생성한다. 임의의 시점에서 이미지를 생성하기 위해, 각 픽셀에서 참조 이미지에 해당하는 평면을 렌더링하여 시점 반대 방향의 광선을 생성한다. 이 광선을 참조 이미지의 투영 공간으로 변환한 후, 광선과 깊이 맵간의 교차점을 찾는다. 이렇게 찾아낸 깊이 맵의 교차점과 일치하는 참조 이미지의 픽셀 색으로 새로운 시점의 이미지를 만들어 낼 수 있다. 이와 같은 기법은 기하 정보의 복잡도와 관계없이 수십 프레임의 속도로 실시간 렌더링이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.