정보통신 분야는 물론, 문화, 교육 등 생활 속 모든 분야에서 유비쿼터스라는 수식어가 따라다니고 있는 것을 많이 볼 수 있다. 관련 전문가들은 2010년경에는 유비쿼터스가 우리 생활에서 대중화가 될 것이며 이에 따른 부가가치 규모도 80조원에 이를 것으로 전망하고 있다. 교육 분야도 아날로그 환경 하에서 주변 환경 변화에 더디게 반응해 왔던 과거와 달리 최근 조금은 걱정스러울 정도로 IT의 신기술에 발 빠르게 적응하면서 e러닝, T러닝, M러닝, U러닝 등의 새로운 신조어들이 생겨나고 있다. 이에 진정 살아 있는 e러닝의 최종 모습이라고 불려지고 있는 유비쿼터스 학습(U러닝)에 대해 살펴보고, U러닝이 성공하기 위해서는 어떠한 요소들이 필요한가에 대해 살펴봤다.
본 연구에서는 최근 급격히 발달하고 있는 인공지능 및 딥러닝 기술에 대한 소개와 수문기상을 포함한 수자원 분야에의 적용사례를 검토하였다. 본 연구의 목적은 우리 삶의 일부가 되어 가고 있는 인공지능 및 딥러닝 기술을 이해하고 보다 실효적인 측면에서 수자원 분야에 적용 활용하기 위한 연구 가이드라인을 제시하기 위함이다. 이를 위해 최근 널리 사용되는 인공지능 및 딥러닝 기법을 조사 분석하였다. 분석을 통해 수자원 분야에서 이러한 기술이 요구되는 분야와 신기술(emerging techniques)을 조망해 보고 기존 기술이 인공지능 및 딥러닝 기법의 적용으로 대체 가능한 정도를 가늠해 보았다. 이를 통해 인공지능 및 딥러닝 기술 적용의 장점과 한계를 고찰하고 향후 집중 연구가 필요한 기술을 제시하였다.
교육 분야에서의 빅데이터 활용이 선진국을 중심으로 확산되고 있다. 그러나 국내의 경우 이와 관련된 실험적 접근만이 있을 뿐 관련 연구나 현장의 서비스는 아직 나타나지 않고 있는 실정이다. 따라서 이러닝 업계에서 빅데이터의 응용이 저조한 이유를 파악하고 이를 개선할 연구와 대안 모색이 시급한 상황이다. 연구 결과, 이러닝 산업계에서는 빅데이터의 이해 수준이 높으면 빅데이터가 이러닝에 미치는 영향이 크다고 인식하고 있으며, 매출 규모가 큰 업체일수록 영향이 크다고 인식하고 있는 것으로 종합되었다. 이에 본 연구는 매출규모에 따라 다른 빅데이터에 관한 교육 및 활용 지원 정책을 펼 것을 제언하였다.
우리나라의 이러닝 산업계에서 이러닝 콘텐츠를 제작하는 사업자들은 안정적으로 흑자구조의 사업을 운영하지 못해 진출과 퇴출이 심하거나 영세한 열악한 산업구조를 보이고 있다. 이는 이러닝 산업의 유통구조 내에서 이러닝 콘텐츠 제작과 관련한 많은 문제점 중에서 이러닝 콘텐츠 개발단가에 중대한 문제점이 있기 때문이다. 본 연구는 이러닝 콘텐츠 제작에 필요한 개발단가를 조사하고, 유사한 다른 산업분야와의 비교분석을 통해 합리화 방안을 제시한다. 이러닝 사업의 건전한 유통구조를 위해 각 사업영역 분야별 적정 개발단가 모형을 설계한 후, 전문가 및 기업체 책임자에 대한 인터뷰 실사를 통해 이러닝 콘텐츠와 서비스에 대한 유통구조의 문제점 분석하여 이러닝 개발 용역 표준단가기준안을 도출하였다. 동시에 이러닝 콘텐츠 개발단가 적용을 위한 제도적인 개선방안도 제시하였다.
Sloan 컨소시엄 2004에 의하면 원격교육이 고등 교육 분야에서 빠르게 성장하는 분야이다. 본 연구는 정보시스템 성공모델에 기초하여, 학습관리시스템에 대한 만족과 함께 이러닝 학습자 특성과 관련된 요인을 중심한 연구로서, 이러닝 학습자의 자기조절 학습 전략과 학습자의 컴퓨터 자기 효능감에 초점을 맞춘 연구이다. 학습자의 학습관리시스템 만족과 관련한 요인은 시스템 품질, 학습 컨텐츠 품질, 학습자와 교수자간의 서비스 품질로 구성하였다. 실증분석의 결과 이러닝의 학습관리시스템 만족과 관련하여 인지된 유용성, 인지된 사용용이성 및 서비스품질이 주요 요인으로 나타났고, 학습자 스스로의 자기조절학습 전략과 컴퓨터 자기 효능감 역시 이러닝 만족에 영향을 미치는 중요 요인임을 증명되었다.
2014 년 Ian Goodfellow 가 발표한 한편의 논문은 머신러닝 분야에 새로운 방향을 제시하였다. Generative Adversarial Networks, 일명 GAN 이라 불리는 이 논문은 이전까지 딥러닝으로 하지못했던 새로운 것을 창조해내는 작업을 하는 첫번째 딥러닝 알고리즘이다. 이전까지는 딥러닝을 통해 영상에서 객체의 종류를 판단하는 Classification 문제나, 영상에서 특정 객체를 검출하여 위치를 찾는 Object detection, 영상 내 특정 객체만 분리해내는 Image segmentation 문제를 해결하고 있었다. GAN 의 등장으로, 다양한 방면에서 GAN 을 적용하여 기존에는 하지 못했던 새로운 분야에 딥러닝을 적용한 사례들이 등장하고 있다. 본 논문에서는 GAN 의 원리 분석과 GAN 을 응용하여 여러 분야에 적용한 사례들을 살펴보고자 한다.
본 연구는 최근 이러닝 분야에서 모바일 러닝과 마이크로콘텐츠에 의해 부상하고 있는 마이크로러닝의 특성을 정의하고 이에 대한 적용 만족도를 분석하여, 향후 마이크로러닝이 새로운 학습 형태로 자리매김 할 수 있는지를 살펴보았다. 이를 위하여 사전 문헌분석을 통해 마이크로러닝의 특성을 정의하고 잘 갖추어진 마이크로러닝 사이트에 대하여 특성 만족도를 실증 검증하고, 이 특성 이외에 어떤 다른 기술적 기능이 필요한가에 대하여도 전문가의 의견수렴을 통하여 제시하였으며, 이러닝의 미래기술인 학습 분석이나 성과측정 등의 기술적 기능과 향후 연계되어야 한다는 것을 제시하였다. 본 연구의 결과에 따르면 마이크로러닝의 특성인 학습콘텐츠의 질적, 양적 수준, 학습콘텐츠에의 접근성, 모바일 기기 접근성, 동기부여 및 상호작용의 모든 면에서 특성 만족도를 보여주고 있었다. 따라서 마이크로러닝은 그 기능적 특성을 잘 반영한다면 이러닝 분야에서 효과적인 학습 형태로 자리 잡을 것이며 밀레니얼 세대를 위한 교육과 학습 및 훈련에 크게 기여할 수 있을 것이다.
지능형 시스템의 수요가 증가하면서 영상인식의 중요성이 부각되고 있다. 사람이 직접 물체 인식 과정을 모델링하는 방식을 넘어 최근에는 기계학습을 이용하여 이를 자동화하는 방법이 주를 이루고 있다. 그 중 딥러닝은 빅데이터를 활용하는 각종 분야에서 놀라운 성능을 보이며 기계학습 수준을 한 단계 진화시킨 기술로 평가 받고 있으며 영상 인식의 다양한 분야에서 응용되고 있다. 본 글에서는 딥러닝을 이용한 물체 검출 기법의 동향을 살펴보고 이를 차량 전면부 인식에 적용한 사례를 소개한다.
최근 딥러닝 기술이 발전함에 따라 이를 네트워크 침입탐지 분야에 적용하려는 연구가 활발히 이루어지고 있으며 이에 따라 대용량 네트워크 데이터에 대한 처리 방법이 주목받고 있다. 본 논문에서는 네트워크 데이터를 이미지화하는 전처리 방법을 제안한다. 네트워크 데이터를 세션단위로 처리하여 손실율을 줄이면서 딥러닝 알고리즘에 바로 적용할 수 있도록 정규화된 이미지로 변환하는 방법이다. 이를 통해 딥러닝 기술을 적용한 네트워크 정보보안 분야의 연구 활성화를 기대할 수 있다.
가뭄은 사회·경제적으로 매우 큰 피해를 주는 자연재해이며, 그 시작과 발생 지역을 정확하게 예측하는 데 어려운 문제가 있다. 이에 수문 분야에서는 가뭄에 영향을 미치는 수문·기상인자들을 이용하여 다양한 가뭄지수를 개발하였고 이를 활용하여 가뭄 현상을 모니터링하고 예측 및 전망하는데 다양한 노력을 기울이고 있다. 하지만 가뭄지수들은 실제 가뭄이 어떠한 형태로 발생하는지 파악하기에 많은 한계점을 가지고 있다. 이에 최근 들어 미국과 유럽에서는 실제 농업, 환경, 에너지 등과 같은 다양한 분야에 걸쳐 가뭄 피해로 인해 생기는 가뭄 영향을 보다 체계적이고 상세한 데이터 인벤토리로 구축하고 가뭄지수와의 상관관계, 회귀분석과 같은 연구를 통해 가뭄 영향 예측을 시도하고 있다. 따라서 본 연구에서는 보고서, 데이터베이스, 웹 크롤링(Web-Crawling)을 통한 뉴스 기사 등과 같은 자료를 수집하여 국내 가뭄 영향 인벤토리를 구축하였다. 또한 수문 분야에 널리 사용되고 있는 가뭄지수인 표준 강수 증발산량지수 SPEI(Standardized Precipitation-Evapotranspiration Index)를 기반으로 지역에 따른 가뭄 영향을 예측하기 위해 최근 로지스틱 회귀모형, Random forest, Support vector machine, XGBoost 등의 다양한 머신러닝 기법을 적용하였다. 각 모형의 성능을 Receiver Operating Characteristic(ROC) 곡선을 통해 평가하여 가뭄 영향 예측에 적절한 머신러닝 기법을 제시하였다. 본 연구 결과를 통해 텍스트 기반의 가뭄 영향 자료와 머신러닝 기법을 통한 가뭄 영향 예측 방법론은 가뭄 재난 관리에 유용한 정보를 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.