• Title/Summary/Keyword: 이동 물체

Search Result 893, Processing Time 0.036 seconds

Shadow Removal based on Chromaticity and Brightness Distortion for Effective Moving Object Tracking (효과적인 이동물체 추적을 위한 색도와 밝기 왜곡 기반의 그림자 제거)

  • Kim, Yeon-Hee;Kim, Jae-Ho;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.249-256
    • /
    • 2015
  • Shadow is a common physical phenomenon in natural images and may cause problems in computer vision tasks. Therefore, shadow removal is an essential preprocessing process for effective moving object tracking in video image. In this paper, we proposed the method of shadow removal algorithm using chromaticity, brightness distortion and direction of shadow candidate. The proposed method consists of two steps. First, removal process of primary shadow candidate region by using chromaticity, brightness and distortion. The second stage applies the final shadow candidate region to obtain a direction feature of shadow which is estimated by the thinning algorithm after calculating the lowest pixel position of the moving object. To verify the proposed approach, some experiments are conducted to draw a compare between conventional method and that of proposed. Experimental results showed that proposed methodology is simple, but robust and well adaptive to be need to remove a shadow removal operation.

A Study on Target Tracking using Neural Networks (신경회로망을 이용한 물체 추적에 관한 연구)

  • 육창근;문옥경;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.426-428
    • /
    • 1998
  • 본 논문은 움직임 추정기법 중의 하나인 차영상 분석 기법을 기반으로한 이동 물체 추적 시스템을 제안한다. 실세계와 같은 복잡한 환경에서의 적응성을 높이기 위해 동적인 배경 추출 방법을 제안하고, 이를 바탕으로한 차영상 분석 기법을 이용하여 이동 물체를 탐지한 후 개선된 인공신경망의 경쟁학습 모델인 ART2 학습알고리즘을 이용하여 추적한다. 또한 이동 물체의 평가도 값이 아닌 RGB 컬러정보를 이용한 물체의 특징 벡터를 구한다. 이러한 특징 벡터들은 이동 물체의 모양이나 명암의 변화를 반영한다. 이러한 정보의 변화에 적응성을 갖게 하기위해 개선된 ART2를 사용한다. 그리고 실제 환경에서 보행자를 탐지, 추적하는 실험 결과 Gray 영상보다 정확한 추적이 가능하였다.

  • PDF

Autonomous Mobile Robot Using Sensor Fusion (센서 융합을 이용한 로봇의 자율 이동)

  • Kim, Sang-Hon;Song, Yong-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.421-424
    • /
    • 2012
  • 본 논문은 실내 공간에서 RFID와 센서를 이용하여 이동로봇이 자기 위치를 파악하고 목표물체를 인식할 수 있는 기법을 제안한다. RFID를 지면과 목표물체에 설치하고 로봇은 리더기와 다양한 센서를 갖춤으로써 이동시 자기 위치를 파악하고 물체로부터도 고유정보를 얻을 수 있게 구성하였다. 초음파 센서 신호의 귀환시간을 활용하여 전방 물체의 거리를 추출하며 바닥의 RFID로부터 이미 획득한 자기 위치를 활용하여 물체의 절대 위치를 구한다. 이는 로봇을 중심으로한 경로지도를 실시간으로 작성하는 것이 가능하며, 실내의 구조 및 목표 물체의 위치등을 포함한 전체적인 지도를 작성할 수 있다. 최종적으로는 최적의 경로계획을 세워 로봇이 목표 위치로 이동하거나 자율적 탐색이 가능하도록 한다.

Correspondence and clustering using color features (칼라 특징 값을 이용한 correspondence 와 clustering)

  • 김성동;진성아;주문원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.177-181
    • /
    • 2001
  • 본 논문에서는 칼라차 영상을 이용하여 물체들의 움직임을 분석하고 이동 형태들의 대한 RGB 특징 값을 추출하였으며 그 동안 미해결 과제로 남았던 이동 물체들 사이의 영역정합(matching)과 군집화 (clustering)를 이용하여 대응(Correspondence)관계를 확인하는 문제를 해결하여 이동 물체들을 추구하여 보았다.

  • PDF

Feature Parameter Extraction for Shape Information Analysis of 2-D Moving Object (2-D 이동물체의 형태 정보 분석을 위한 특징 파라미터 추출)

  • 김윤호;이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1132-1142
    • /
    • 1991
  • This paper proposed a method of feature parameter extraction for shape information analysis of moving object. In the 2-D plane, moving object are extracted by the difference method. Feature parameters of moving object are chosen area, perimeter, a/p ratio, vertex, x/y ratio. We changed brightness variation from the range of 600Lux to the 1400Lux and then determined Permissible Error range of feature parameter due to the brightness variation. So as to verify the validity of proposed method, experiment are performed with a toy car and it's results showed that decision error was less than 6%.

  • PDF

Tracking of a moving object using improved pattern matching (개선된 패턴매칭을 사용한 이동물체 추적)

  • Shin, Seung-Hwan;Lee, Jin-Han;Lee, Ju-Ill;Choi, Han-Go
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.180-183
    • /
    • 2010
  • 본 연구에서는 개선된 영역기반의 패턴매칭 기법을 사용하여 이동물체의 탐색과 검출을 수행하였다. 시간에 따라 변화하는 이동물체의 안정된 추적을 위해 매 영상 프레임마다 이동물체의 윤곽선을 탐지하여 다음 영상에서의 템플릿으로 사용하기 위해 갱신하였으며, 패턴매칭의 연산속도 향상을 위해 패턴 정합률에 따라 영상을 다른 비율로 압축하여 추적하는 방법을 제안하였다. 기존의 영상파일을 사용하여 시뮬레이션 한 결과 이동물체의 검출과 추적에 양호한 동작을 보여주었으며 제안된 방법의 실시간 동작 가능성을 조사하였다.

  • PDF

Shadow Removal Based on Chromaticity and Entropy for Efficient Moving Object Tracking (효과적인 이동물체 추적을 위한 색도 영상과 엔트로피 기반의 그림자 제거)

  • Park, Ki-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2014
  • Recently, various research for intelligent video surveillance system have been proposed, but the existing monitoring systems are inefficient because all of situational awareness is judged by the human. In this paper, shadow removal based moving object tracking method is proposed using the chromaticity and entropy image. The background subtraction model, effective in the context awareness environment, has been applied for moving object detection. After detecting the region of moving object, the shadow candidate region has been estimated and removed by RGB based chromaticity and minimum cross entropy images. For the validity of the proposed method, the highway video is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow removal and moving object tracking are well performed.

Model Creation Algorithm for Multiple Moving Objects Tracking (다중이동물체 추적을 위한 모델생성 알고리즘)

  • 조남형;김하식;이명길;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.633-637
    • /
    • 2001
  • In this paper, we proposed model creation algorithm for multiple moving objects tracking. The proposed algorithm is divided that the initial model creation step as moving objects are entered into background image and the model reformation step in the moving objects tracking step. In the initial model creation step, the initial model is created by AND operating division image, divided using difference image and clustering method, and edge image of the current image. In the model reformation step, a new model was reformed in the every frame to adapt appearance change of moving objects using Hausdorff Distance and 2D-Logarithmic searching algorithm. We simulated for driving cart in the road. In the result, model was created over 98% in case of irregular approach direction of cars and tracking objects number.

  • PDF

Tracking Moving Object using Hausdorff Distance (Hausdorff 거리를 이용한 이동물체 추적)

  • Kim, Tea-Sik;Lee, Ju-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper, we propose a model based moving object tracking algorithm In dynamic scenes To adapt shape change of the moving object, the Hausdorff distance is applied as the measurement of similarity between model and image To reduce processing time, 2D logarithmic search method is applied for locate the position of moving object Experiments on a running vehicle and motorcycle, the result showed that the mean square error of real position and tracking result is 1150 and 1845; matching times are reduced average 1125times and 523 times than existing algorithm for vehicle image and motorcycle image, respectively It showed that the proposed algorithm could track the moving object accurately.

  • PDF

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.