능동 감시 카메라에서 얻어진 연속 영상에는 카메라의 움직임에 의해 발생하는 전역 움직임과 이동 물체의 국부 움직임이 동시에 존재한다. 따라서 이동 물체의 자동 추적을 위한 영상 기반의 실시간 감시 시스템의 구현을 위해 이동 물체의 국부 움직임만을 검출하고 추적할 수 있는 효과적인 알고리즘이 요구된다. 이 논문에서는 연속 영상의 차영상을 이용하는 빠르고 효율적인 움직임 검출 및 추적 알고리즘을 제안한다. 이 알고리즘은 우선 물체의 속도를 고려하여 이전 영상을 선택하고. 현재 영상과 선택된 이전 영상에 존재하는 전역 움직임을 빠르고 정확하게 추정하기 위해 신뢰성 있는 소수의 정합 블록만을 선택하여 사용한다. 마지막으로 현재 영상과 전역 움직임이 보상된 이전 영상의 차영상을 얻고, 현재 영상과 차영상의 상관 관계를 이용하여 차영상에 존재하는 강한 잡음을 효과적으로 제거하여 이동 물체 영역을 추출한다. 팬틸트 유닛과 AMD 800MHz 프로세서가 내장된 PC로 구성된 능동 카메라 시스템에 제안한 알고리즘을 적용하였다. 이 시스템은 320$\times$240 크기의 영상을 처리하며 수평 수직 방향의 $\pm$20 탐색 영역에서 전역 움직임을 추정할 때 약 50 frames/sec 의 속도로 움직임 검출이 가능하므로 빠른 이동 물체의 실시간 추적에 적합하다.
본 논문에서는 인간의 행동을 컴퓨터에게 인식시켜 가상의 공간에 존재하는 에이전트(agent)들과 상호 작용이 가능한 시스템을 구현하였다. 이 시스템은 크게 행동을 인식하는 인식 시스템과 인식 정보를 통해 미리 구성한 가상 공간에 존재하는 여러 에이전트간의 상호 작용을 하는 시스템으로 구성되어있다. 인식 시스템은 동작자의 연속적인 행동을 CCD카메라로부터 입력받아 각각의 프레임에 대해 머리와 손의 특징을 추출한다. 그리고, 추출된 정보를 연속적인 시간의 흐름에 대해 해석을 한 후, 동작을 인식한다. 상호 작용 시스템을 위해 동작자의 분신인 아바타(avatar), 자율적으로 행동하는 퍼피(puppy), 그리고 비자율적인 객체인 탁자, 문, 창문, 공과 같은 이동이 가능한 오브젝트(object)들이 존재하는 가상 공간을 구현하였다. 인식된 동작은 상호 작용 시스템을 통해 가상 공간의 아바타에게 전달이 된다. 아바타의 동작 천이는 상태 천이도를 바탕으로 이루어진다. 상태 천이도는 각각의 동작이 노드로 정의되고, 그 노드들을 종속적으로 연결한 그래프로 구성된다. 아바타는 문과 창문을 여닫고, 오브젝트를 잡거나 이동할 수 있다. 또 퍼피에게 명령을 내리거나 퍼피의 동작에 대한 응답을 할 수 있다.
컴퓨터 비젼에 관한 고전적인 연구 주제들 중의 하나는 두 개 이상의 이미지로부터 3차원 형상을 재구성하는 3차원 변환에 관한 것이다. 본 논문은 단안 카메라로 촬영한 일반적인 2차원 영상물에서 능동적으로 움직이는 3차원 영상의 깊이 정보를 추출하는 문제를 다룬다. 연속하는 프레임들간의 영상 블록의 움직임을 평가하여 카메라의 회전과 배율효과를 보상하고 다음과 같은 두 개의 단계에 걸쳐 블록의 움직임을 추출한다. (i) 블록의 위치와 움직임을 이용하여 카메라의 이동과 초점거리에 대한 전역 파라메타를 계산한다. (ii) 전역 파라메타, 블록의 위치와 움직임을 이용하여 평균 영상 깊이에 대한 상대적인 블록의 깊이를 계산한다. 다양한 동영상을 대상으로 특이점인 경우와 그렇지 않은 경우를 실험하였다. 결과로 얻어지는 상대적인 깊이 정보와 객체는 인간이 판단하는 경우와 동일함을 보였다.
본 논문은 터널 내에 설치된 카메라를 이용하여 터널 내 유고를 검지하는 방법을 제안하였다. 제안한 유고 검지 방법은 터널 내 설치된 카메라에서 영상을 입력받아 실시간으로 배경영상 차이법을 이용하여 움직이는 객체를 추출하여 정지물체, 차량 외 통행, 연기, 역주행을 검지하였다. 터널 내 이동하는 객체를 검지하기 위하여 객체의 이동 정보를 이용하여 능동적인 배경영상을 생성하였으며, 터널 내에서 발생하는 조명의 변화, 터널 입 출구에서 발생하는 외부 조명의 영향에 강인한 유고 검지 방법을 개발하였다. 제안한 방법의 성능을 알아보기 위하여 전남 여수의 마래터널 및 엑스포터널, 전북 임실의 운암터널에서 실험영상을 취득하였다. 실험에 사용한 영상의 개수는 정지물체 20건, 차량 외 통행 20건, 연기 4건, 역주행 10건이며 검지율은 정지물체, 차량외통행, 역주행은 실험 영상에서 모두 검지하였으며 연기의 경우 3건을 검지하여 우수한 성능을 확인할 수 있었다. 제안한 방법은 현재 전남 여수의 마래터널 및 엑스포터널, 전북 임실의 운암터널에서 운영중에 있으며 정확한 성능을 알아보기 위해서는 터널 내에서 실제 발생하는 유고 동영상을 획득한 뒤 성능 평가를 해야 할 것으로 사료된다.
본 연구에서는 SNS와 같이 이미지와 함께 글을 작성하는 활동을 보조하기 위해 YOLO와 GPT를 활용한 SNS 문장 작성 보조 시스템을 제안한다. YOLO 모델을 활용하여 글 작성 시 삽입되는 이미지에서 객체를 추출하고 메타정보인 GPS 정보, 생성 시간 정보도 추출하여 함께 GPT의 프롬프트 값으로 사용한다. YOLO 모델을 사용하기 위해 양식 이미지 데이터로 학습하여 사용했으며 해당 모델의 mAP score는 평균 약 0.25이다. GPT는 '맛집 리뷰' 주제의 1,000개의 블로그 텍스트 데이터를 학습하였으며, 본 연구에서 학습된 모델을 사용하여 이미지에서 추출한 2가지 타입의 키워드로 문장을 생성하였다. 생성된 문장의 실용성을 평가하기 위해 설문을 진행하였으며 설문 결과의 명확한 분석을 위해 폐쇄형 설문을 진행하였다. 삽입한 이미지와 키워드 문장을 제공하여 질문에 대해 3가지 평가 항목을 두어 진행하였다. 설문 결과 이미지의 핵심 키워드 경우 유의미한 문장을 생성한다는 결과를 얻을 수 있었다. 본 연구를 통해서 이미지 기반 문장 생성 시 이미지 키워드와 GPT 학습 내용과의 관계에 따라 결과물의 정확성이 달라진다는 결과를 얻을 수 있었다.
급증하는 디지털 사진 데이터를 내용정보를 고려하여 효율적으로 관리하기 위해서는 무엇보다도 각 사진 이미지들이 얼마나 유사한지를 밝히는 것이 중요하다. 이를 위해 사진을 블록 단위로 분할하고 높은 유사도를 가지는 상위 블록 쌍을 이용하여, 그리디 알고리즘에 기반한 2차원 정렬(alignment)을 통해 주변 블록으로 유사 매칭 영역을 확장함으로써 동일한 객체 혹은 배경을 공유하고 있는지를 판별한다. 제안하는 정렬 알고리즘을 이용해 전체 이미지상에서 최적의 매칭 유사도 값을 가지는 블록영역을 추출해낼 수 있으며, 객체의 이동이나 자세의 변경 및 카메라의 줌 변경에 구애 받지 않으면서 계산이 가능하다. 실험을 통해 다양한 사진에 대해서 제안한 방법이 어떻게 적용될 수있는 지를 알아보고, 추후의 디지털 사진 클러스터링 및 대용량 사진 관리에 유용하게 활용될 수 있음을 살펴본다.
항공 레이저 스캐닝(ALS) 시스템으로부터 획득한 LiDAR 데이터를 미용하여 3차원 객체 모델링과 지형도 제작을 위해서는 데이터의 기하학적 및 의미적인 분할과 같은 체계적인 데이터 처리가 선행되어야 한다. ALS로 부터 활용 가능한 LiDAR 데이터를 획득하기 위해서는 GPS, INS 및 레이저 스캐너 데이터의 통합이 필수적이다. 본 연구에서는 건물추출과 지붕 구조물 분할을 위해서 LiDAR 데이터를 영상화하여 디지털 영상처리 기법을 적용하였다. 영상화된 데이터를 사용하는 주요 장점 중 하나는 기존의 다양한 영상처리 알고리즘을 사용할 수 있다는 점이다. 격자화 및 정량화를 거치는 영상화 과정에서 원시 LiDAR 데이터가 한정된 밝기값으로 변환되므로 평활화 및 상세 정보의 손실이 발생될 수 있지만. 평활화된 데이터는 표면분할과 모델링에 오히려 적합하다. 건물의 경계선은 윤곽선 추출 연산자를 이용하여 정확하게 추출하였으며, 건물 모양에 적합하도록 규격화하였다. 건물 지붕의 구조물의 분할은 영역확산을 기반으로 수행하였다. 이 결과 다양한 디지털 영상처리 기법을 복합적으로 적용하여 건물추출과 지붕 구조물의 면분할이 가능함을 보여주었다. 또한 지붕의 형태를 재현하기 위한 특성정보 추출에 관한 개념적 방법을 제안하였다. 지붕 데이터를 분할하고 모델링을 위해 통계적 및 기하적 특성을 이용하였으며. 제안한 방법에 의한 시뮬레이션 결과는 지붕면을 분할하고 모델링하는데 가능함을 보여주고 있다.
LiDAR는 광범위한 지역의 지형 지물 및 지표면에 대한 3차원 좌표를 신속하게 획득할 수 있는 장비로 고정밀의 3차원 공간데이터를 제공하는 장점이 있다. 그러나 LiDAR 데이터는 불규칙한 3차원 점 데이터로 구성되어 있으므로, 의미적이고 시각적인 정보를 제공하지 않으며, LiDAR 데이터만을 사용하여 정보를 추출하는 것은 어렵다. 본 연구에서는 항공 LiDAR 데이터로부터 건물의 외곽선 자동 추출 및 3차원 상세 모델링을 위한 방법을 제안하였다. 전처리 과정으로 반복적 평면 fiitting을 통하여 노이즈 및 불필요한 데이터를 제거하고, 히스토그램 분석을 수행하여 지면과 비지면 데이터를 효과적으로 분리하였다. 건물 외곽선을 추출하기 위해서 객체추적 기법을 이용하여 건물의 외곽에 해당하는 LiDAR 점들을 분류하였으며, 선행과정을 통해 LiDAR 데이터로부터 최종적으로 건물의 외곽선을 추출하였다. 정확도 검증을 위해 추출된 건물의 외곽선을 1:1,000 수치지도와 비교한 결과, 실험지역의 평면 RMSE가 약 0.56m였다. 또한, 건물의 상부구조물의 형태를 재현하기 위한 특성정보 추출 방법을 제안하였다. 지붕면을 세부적으로 분할하고 모델링하기 위하여 통계적 및 기하적 특성정보를 이용하였으며, 각각의 상부구조물에 적합한 수학적 함수를 최소제곱법에 의해 결정함으로써 3차원 모델링이 가능하도록 하였다. 상부구조물 모델링 결과 각 형태에 따른 RMSE가 사각형 상부구조물은 0.91m, 삼각형 상부구조물은 1.43m, 아치형 상부구조물은 1.85m, 돔형 상부구조물이 1.97m였다. 이는 원시 LiDAR 데이터로부터 지붕면 분할 및 3차원 자동 모델링이 효과적으로 수행되었음을 보여주고 있다.
본 논문에서는 단일 카메라를 이용하여 얼굴의 움직임 정보를 추정하고 3차원 모델을 합성하기 위한 기법을 제안한다. 먼저 단일 카메라 입력 영상에서 사용자의 얼굴 영역 특징 점 취득을 위한 4개의 하부 이미지를 획득한다. 획득된 4개의 하부 이미지를 템플릿으로 사용하여 사용자 얼굴 영역의 정보를 추출하며, 이들 4개의 특징 점을 사용하여 사용자 얼굴과 카메라 영상 평면 사이의 사영 관계를 계산한다. 취득된 카메라 행렬로부터 얼굴의 움직임 정보인 이동과 회전 성분을 추정할 수 있으며, 이를 기반으로 3차원 모델의 자세 정보를 설정한 다음 이를 사용자 얼굴에 가상의 객체를 합성하기 위한 정보로 이용한다. 다양한 실험을 통하여 사용자 얼굴의 움직임에 대한 정보 추출의 정확도를 검증하였다.
가상 세계의 공유 개념은, 특히 사용자들이 인터넷 같이 대규모 네트웍을 통해 지역적으로 분산된 경우는 복제가 수용할 수 있는 상호작용 성능을 제공하기 때문에 각 사용자의 사이트에 정보를 복제함으로써 확장된다. 그러나, 다수의 동시 갱신은 replicas간의 일관되지 않은 뷰를 일으키게 될 것이다. 따라서, 동시성 제어가 복제자들간에 일관된 상태를 유지하도록 하기 위한 중요한 요소가 된다. 우리는 단지 대상 객체의 주변에 있는 사용자들만이 소유권 요청을 다중 전송하게 하는 확장성 있는 예측기반 동시성 제어 스킴을 제안했었다. 이 작업에서, 우리는 모든 사용자들이 동일한 속도론 가지고 가상 세계를 이동한다고 가정했다. 이것은, 그러나, 좀더 사실성을 더하기 위해 사용자가 가상 세계와 상호작용을 할 매 그들의 이동속도를 변경하도록 하는 네트웍 게임같은 네트웍 가상 환경에서는 너무 common 하다. 본 논문은 다양한 속도를 가진 사자를 지원하기 위한 확장을 제안한다. 확장된 스킴은 다른 속도의 수만큼의 다중 Entity Radii를 가지며 각 속도를 가진 사용자에게 분리된 큐를 할당한다. 각 큐는 다음 소유자 후보를 예측하기 위해 동시에 예측을 수행하고 선택된 후보들간에서 최소의 Predicted Collision Time을 가지는 최종 후보자가 선택된다. 이는 사용자의 속도에 기반을 둔 적절한 Entity Radius를 사용함으로써 소유권의 timely advanced transfer과, 다른 이돔 속도와 latency를 가지는 사용자들 간의 간섭을 줄임으로써 공정(공평)한 소유권 양도, 그리고 불필요한 소유권 전송을 줄임으로써 놓은 예측 정확도를 제공한다.성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.다.으로서 hemicellulose구조가 polyuronic acid의 형태인 것으로 사료된다. 추출획분의 구성단당은 여러 곡물연구의 보고와 유사하게 glucose, arabinose, xylose 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.