• Title/Summary/Keyword: 의탄성 변형율

Search Result 61, Processing Time 0.029 seconds

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF

Evaluation of Properties of 80, 130, 180 MPa High Strength Concrete at High Temperature with Heating and Loading (고온가열 및 하중재하에 따른 80, 130, 180 MPa 초고강도콘크리트의 역학적특성평가)

  • Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Tae-Gyu;Lee, Seong-Hun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.613-620
    • /
    • 2013
  • Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Because of this, standards and researches on the degradation of the mechanical properties of concrete at high temperatures have been presented. However, research data about the state that considering the loading condition and high-strength concrete is not much. Therefore, this study evaluated the high-temperature properties of high-strength concrete by loading condition and elevated temperature. The stress-strain, strain at peak stress, compressive strength, elastic modulus, thermal strain and the transient creep are evaluated under the non-loading and $0.25f_{cu}$ loading conditions on high strength concrete of W/B 12.5%, 14.5% and 20%. Result of the experiment, decrease in compressive strength due to high temperature becomes larger as the compressive strength increases, and residual rate of elastic modulus and compressive strength is high by the shrinkage caused by loading and thermal expansion due to high temperature are offset from each other, at a temperature above $500^{\circ}C$.

Improved Stability Design of Plane Frame Members (평면프레임 구조의 개선된 좌굴설계)

  • Kim, Moon Young;Song, Ju Young;Kyung, Yong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.225-237
    • /
    • 2006
  • Based on the study conducted by Kim et al. (205a, b), an improved stability design method for evaluating the effective buckling lengths of beam-column members is proposed herein, using system elastic/inelastic buckling analysis and second-order elastic analysis. For this purpose, the stress-strain relationship of a column is inversely formulated from the reference load-carrying capacity proposed in design codes, so as to derive the tangent modulus of a column as a function of the slenderness ratio. The tangent stiffness matrix of a beam-column element is formulated using the so-called "stability functions," and elastic/inelastic buckling analysis Effective buckling lengths are then evaluated by extending the basic concept of a single simply-supported column to the individual members as one component of a whole frame structure. Through numerical examples of several structural systems and loading conditions, the possibilities of enhancement in stability design for frame structures are addressed by comparing their numerical results obtained when the present design method is used with those obtained when conventional stability design methods are used.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF

A Formulation and Performance Characteristics of Composite Solid Propellant for an Application to Gas Generators (기체발생기용 복합고체추진제의 조성 및 성능특성 연구)

  • Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-184
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}C{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

  • PDF

Study for Mechanical Properties of Electroless (Ni/Au) Plated Monodisperse Polymer Particles (무전해 (니켈/금) 도금 처리된 단분산 가교고분자 미립자의 기계적 물성 연구)

  • Kim, Dong-Ok;Jin, Jeong-Hee;Shon, Won-Il;Oh, Seok-Heon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.410-416
    • /
    • 2007
  • Monodisperse polymer particles were prepared via one- step seeded polymerization using PMMA as seed particles, and HDDA, triEGDMA or EGDMA as crosslinking monomer. For the study, the effects of 1) the ratio of the absorbed monomer to the seed polymer particles (swelling ratio), 2) the characteristics of crosslinking monomer, 3) electroless Ni plating, and 4) electroless Au Plating on the variation of mechanical properties of polymer particles, such as recovery rate, K-values, breaking strength and breaking displacement were investigated by using MCT (micro compression test). It was observed that swelling ratio of polymer particles influenced only on breaking strength of polymer Particles, while electroless plating did on recovery rate, K-values ($K_{10}\;and\;K_{20}$) and breaking strength of electroless plated polymer particles. However, breaking displacement and K-values ($K_{30}{\sim}K_{50}$) were more or less insensitive to electroless plating.

Viscoelastic properties of electrorheological fluids (전기유변유체의 점탄성 특성에 관한연구)

  • Choe, Yun-Dae;Kim, Sang-Guk
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.220-227
    • /
    • 1992
  • Electrorheological(ER) fluid's storage shear modulus(G') and loss factor(${\eta}$) have been directly measured using small amplitude forced oscillating rheometer as a function of oscillating frequency, strain amplitude and applied electric field. Two types of experiment were performed , (a) frequency sweep and (b) amplitude sweep. Two kinds of sample were employed for this experiment ; cornstarch particles in corn oil and zeolite particles in silicone oil. The storage shear modulus was a strong function of driving frequency. Generally, the modulus increased with driving frequency. On the other hand, the loss factor was not well behaved as storage modulus, but as the driving frequency increases the loss factor slightly decreases was the trend of the material's characteristics. Also the modulus was a strong function of strain amplitude. Generally, modulus decreased with increasing strain, but loss factor increases slightly with increasing strain amplitude. For G', cornstarch in corn oil ER fluid has higher values than zeolite based fluid as we increased applied electric field. On the other hand, zeolite based fluid has higher values for ${\eta}$. There is a reasonable agreement between theoretical calculation and experiment.

  • PDF

Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete (중량 자철석 콘크리트의 유동성 및 역학적 특성에 미치는 보통중량 굵은골재 치환율의 영향)

  • Mun, Jae-Sung;Mun, Ju-Hyun;Yang, Keun-Hyeok;Lee, Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • The objective of this study is to evaluate the workability and various mechanical properties of heavyweight magnetite concrete and examine the reliability of the design equations specified in code provisions. The main parameters investigated were the water-to-cement ratio and substitution level of normal-weight coarse aggregate (granite) for magnetite. The oven-dried unit weight of concrete tested ranged between 2446 and $3426kg/m^3$. The measured mechanical properties included compressive strength development, stress-strain curve, splitting tensile strength, moduli of elasticity and rupture, and bond stress-slip relationship of concrete. Test results revealed that the initial slump of heavyweight magnetite concrete increased as the substitution level of normal-weight coarse aggregate increases. The substitution level of normal-weight coarse aggregate had little influence on the compressive strength and tensile resistance capacity of heavyweight concrete, while it significantly affected the modulus of elasticity and stress-strain curves of such concrete. The design equations of ACI 349-06 and CEB-FIP provisions mostly conservatively predicted the mechanical properties of heavyweight magnetite concrete, but the empirical equations for modulus of elasticity and splitting tensile strength need to be modified considering the unit weight of concrete.

Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact (저속 충격하에서의 금속복합재료의 동적 특성)

  • ;Gamal A. Aggag;K.Takahashi
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1999
  • This study has observed that the dynamic behavior of Metal Matrix Composites (MMCs) in low velocity impact varies with impact velocity. MMCs with 15 fiber volume percent were fabricated by using the squeeze casting method. The AC8A was used as the matrix, and the alumina and the carbon were used as reinforcements. The tensile and vibration tests conducted yielded the yielded the tensile stress and elastic modulus of MMCs The low pass filter and instrumented impact test machine was adopted to study dynamic behaviors of MMCs corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact corresponding to impact velocity. Stable impact signals were obtained by using the low pass filter. Impact energy of unreinforced alloy and MM s increased as the impact velocity increased. The increase of crack propagation energy was especially prominent, but the dynamic toughness of each material did not change much. To show the relation between crack initiation energy and dynamic fracture toughness, a simple model was proposed by using the strain energy and stress distribution at notch. The model revealed that crack initiation energy is proportional to the square of dynamic fracture toughness and inversely proportional to elastic modulus.

  • PDF

The strain measurement on the aluminum alloy welded transition joint (알루미늄 合金 異材熔接部의 變形率測定)

  • 옹장우;전제춘;오상진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.625-634
    • /
    • 1986
  • The strain distribution on a welded aluminum alloy transition joint produced by a static tensile load has been measured using a moire method combined with photoelastic coating method. The test specimens were made of aluminum alloy 6061-T6 and 2014-T6 butt welded with ER-4043 filler metal, and were post welded heat treated (solid solution heat treatment 502.deg. C 70min.) and precipitated (artificial aging 171.deg. C 600min.) to cause an abrupt change of mechanical properties between the base metals and weld metal. The photoelastic epoxy rubber was cemented on the specimen grating which had been reproduced on the specimen surface by using an electropolishing. The measurements were compared with strains computed by Finite Element Analysis. The following results were abtained. (1) The maximum strain were distributed along the center line in the transverse directiion of the weld metal. (2) The strain gradient along the fusion line increased approaching the V-groove tip and the maximum value was observed at a quarter of width from the V-groove tip. (3) The moire method combined with photoelastic coating was proved very useful for real time strain measurement in the welded aluminum alloy transition joint.