• Title/Summary/Keyword: 의사 결정

Search Result 8,026, Processing Time 0.039 seconds

Literature Review of Commercial Discrete-Event Simulation Packages (상용 이산사건 시뮬레이터 패키지들에 대한 선행연구 분석)

  • Jihyeon Park;Gysun Hwang
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Smart factory environments and digital twin environments are established, and today's factories accumulate vast amounts of production data and are managed in real time as visualized results suitable for user convenience. Production simulation techniques are in the spotlight as a way to prevent delays in delivery and predict factory volatility in situations where production schedule planning becomes difficult due to the diversification of production products. With the development of the digital twin environment, new packages are developed and functions of existing packages are updated, making it difficult for users to make decisions on which packages to use to develop simulations. Therefore, in this study, the concept of Discrete Event Simulation (DES) performed based on discrete events is defined, and the characteristics of various simulation packages were compared and analyzed. To this end, studies that solved real problems using discrete event simulation software for 10 years were analyzed, and three types of software used by the majority were identified. In addition, each package was classified by simulation technique, type of industry, subject of simulation, country of use, etc., and analysis results on the characteristics and usage of DES software were provided. The results of this study provide a basis for selection to companies and users who have difficulty in selecting discrete event simulation package in the future, and it is judged that they will be used as basic data.

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Review for Assessment Methodology of Disaster Prevention Performance using Scientometric Analysis (계량정보 분석을 활용한 방재성능평가 방법에 대한 고찰)

  • Dong Hyun Kim;Hyung Ju Yoo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.39-46
    • /
    • 2022
  • The rainfall characteristics such as heavy rains are changing differently from the past, and uncertainties are also greatly increasing due to climate change. In addition, urban development and population concentration are aggravating flood damage. Since the causes of urban inundation are generally complex, it is very important to establish an appropriate flood prevention plan. Thus, the government in Korea is establishing standards for disaster prevention performance for each local government. Since the concept of the disaster prevention performance target was first presented in 2010, the setting standards have changed several times, but the overall technology, methodology, and procedures have been maintained. Therefore, in this study, studies and technologies related to urban disaster prevention performance were reviewed using the scientometric analysis method to review them. This analysis is a method of identifying trends in the field and deriving new knowledge and information based on data such as papers and literature. In this study, papers related to the disaster prevention performance of the Web of Science for the last 30 years from 1990 to 2021 were collected. Citespace, scientometric software, was used to identify authors, research institutes, countries, and research trends, including citation analysis. As a result of the analysis, consideration factors such as the the concept of asset evaluation were identified when making decisions related to urban disaster prevention performance. In the future, it is expected that prevention performance standards and procedures can be upgraded if the keywords are specified and the review of each technology is conducted.

How User-Generated Content Characteristics Influence the Impulsive Consumption: Moderating Effect of Tie Strength (사용자 제작 콘텐츠 특성이 충동구매에 미치는 영향: 유대강도의 조절효과를 중심으로)

  • Weiyi Luo;Young-Chan Lee
    • Knowledge Management Research
    • /
    • v.23 no.4
    • /
    • pp.275-294
    • /
    • 2022
  • In recent years, with the continuous integrative development of e-commerce and social media, social commerce, as a trust-centered social transaction mode, has become an important performance form of e-commerce. The good experience of online community and abundant user-generated content (UGC) attract more and more users and businesses to participate in the community contribution. In this context, the cost of accessing information is continuously decreasing, which not only makes the purchase process more concise and efficient, but also greatly increases the possibility of consumers' impulsive consumption. However, there are very few empirical studies on the internal influencing mechanism of consumers' impulsive consumption based on the characteristics of UGC for social commerce. In view of this, based on S-O-R model, this study constructs a model of consumers' impulsive consumption in the context of social commerce from the characteristics of UGC, with perceived risk as the mediating variable and tie strength as the moderating variable. The results show that content authenticity, content usefulness, and content valence of UGC have significant negative impacts on consumers' risk perception in the process of purchase decision-making, and consumers' perceived risk has a significant negative impact on consumers' impulsive consumption. Meanwhile, the tie strength between UGC producer and UGC receiver plays a moderating role between content usefulness and perceived risk, as well as between perceived risk and impulsive consumption. Finally, combined with the above findings, this study provides effective suggestions for relevant participants in social commerce in terms of business management.

Applying an Aggregate Function AVG to OLAP Cubes (OLAP 큐브에서의 집계함수 AVG의 적용)

  • Lee, Seung-Hyun;Lee, Duck-Sung;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.217-228
    • /
    • 2009
  • Data analysis applications typically aggregate data across many dimensions looking for unusual patterns in data. Even though such applications are usually possible with standard structured query language (SQL) queries, the queries may become very complex. A complex query may result in many scans of the base table, leading to poor performance. Because online analytical processing (OLAP) queries are usually complex, it is desired to define a new operator for aggregation, called the data cube or simply cube. Data cube supports OLAP tasks like aggregation and sub-totals. Many aggregate functions can be used to construct a data cube. Those functions can be classified into three categories, the distributive, the algebraic, and the holistic. It has been thought that the distributive functions such as SUM, COUNT, MAX, and MIN can be used to construct a data cube, and also the algebraic function such as AVG can be used if the function is replaced to an intermediate function. It is believed that even though AVG is not distributive, but the intermediate function (SUM, COUNT) is distributive, and AVG can certainly be computed from (SUM, COUNT). In this paper, however, it is found that the intermediate function (SUM COUNT) cannot be applied to OLAP cubes, and consequently the function leads to erroneous conclusions and decisions. The objective of this study is to identify some problems in applying aggregate function AVG to OLAP cubes, and to design a process for solving these problems.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.

Development of a Real-time Ship Operational Efficiency Analysis Model (선박운항데이터 기반 실시간 선박운항효율 분석 모델 개발)

  • Taemin Hwang;Hyoseon Hwang;Ik-Hyun Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2023
  • Currently, the maritime industry is focusing on developing technologies that promote autonomy and intelligence, such as smart ships, autonomous ships, and eco-friendly technologies, to enhance ship operational efficiency. Many countries are conducting research on different methods to ensure ship safety while increasing operational efficiency. This study aims to develop a real-time ship operational efficiency analysis model using data analysis methods to address the current limitations of the present technologies in the real-time evaluation of operational efficiency. The model selected ship operational efficiency factors and ship operational condition factors to compare the operational efficiency of the ship with present and classified factors to determine whether the present ship operational efficiency is appropriate. The study involved selecting a target ship, collecting data, preprocessing data, and developing classification models. The results of the research were obtained by determining the improved ship operational efficiency based on the ship operational condition factors to support ship operators.

An Analysis Study on the Current Status and Integration Methods of the Domestic Early Warning System (국내 재난 예경보 시스템 현황 및 통합 방안에 대한 분석 연구)

  • Hwang, Woosuk;Pyo, Kyungsoo
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.80-90
    • /
    • 2022
  • Currently, the domestic early warning system is issued differently for each disaster, and is operated independently by relevant organizations from central government to local governments. Representative domestic disaster warning systems include disaster broadcasting using CBS(Cell Broadcasting Service) and DMB(Digital Multimedia Broadcasting) Automatic Emergency Alert Service, DITS(Disaster Information Transform System) transmitted and displayed on TV screens, automatic response system, automated rainfall warning system, and disaster message board. However, due to the difference in the method of issuing each emergency alert at the site of an emergency disaster, the alerts are issued at different times for each media, and the delivered content is also not integrated. If these systems are integrated, it is expected that damage to people's property and lives will be minimized by sharing and integrated management of disaster information such as voice, video, and data to comprehensively judge and make decisions about disaster situations. Therefore, in this study, we present a plan for the integration of the disaster warning system along with the analysis of the operation status of the domestic early warning system.

BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization (증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘)

  • Pa, Pa Win Aung;Lee, Donghwan;Park, Jooyoung;Cho, Mingeon;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.249-256
    • /
    • 2022
  • Various studies are being actively conducted to show that the real-time visualization technology that combines BIM (Building Information Modeling) and AR (Augmented Reality) helps to increase construction management decision-making and processing efficiency. However, when large-capacity BIM data is projected into AR, there are various limitations such as data transmission and connection problems and the image cut-off issue. To improve the high efficiency of visualizing, a mesh optimization algorithm based on the k-nearest neighbors (KNN) classification framework to reconstruct BIM data is proposed in place of existing mesh optimization methods that are complicated and cannot adequately handle meshes with numerous boundaries of the 3D models. In the proposed algorithm, our target BIM model is optimized with the Unity C# code based on triangle centroid concepts and classified using the KNN. As a result, the algorithm can check the number of mesh vertices and triangles before and after optimization of the entire model and each structure. In addition, it is able to optimize the mesh vertices of the original model by approximately 56 % and the triangles by about 42 %. Moreover, compared to the original model, the optimized model shows no visual differences in the model elements and information, meaning that high-performance visualization can be expected when using AR devices.