• Title/Summary/Keyword: 의미 유사도

Search Result 1,910, Processing Time 0.032 seconds

A Study on Preprocessing Method for Effective Semantic-based Similarity Measures using Approximate Matching Algorithm (의미적 유사성의 효과적 탐지를 위한 데이터 전처리 연구)

  • Kang, Hari;Jeong, Doowon;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.595-602
    • /
    • 2015
  • One of the challenges of the digital forensics is how to handle certain amounts of data efficiently. Although reliable and various approximate matching algorithms have been presented to quickly identify similarities between digital objects, its practical effectiveness to identify the semantic similarity is low because of frequent false positives. To solve this problem, we suggest adding a pre-processing of the approximate matching target dataset to increase matching accuracy while maintaining the reliability of the approximate matching algorithm. To verify the effectiveness, we experimented with two datasets of eml and hwp using sdhash in order to identify the semantic similarity.

A WordNet-based Feature Merge Method for HyperText Classification (하이퍼텍스트 문서의 자동분류를 위한 워드넷 기반 특징 합병 기법)

  • Roh, Jun-Ho;Kim, Han-Joon;Chang, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.406-409
    • /
    • 2012
  • 본 논문은 하이퍼텍스트 문서의 자동분류 성능을 높이기 위한 새로운 접근법을 제시한다. 하이퍼텍스트 문서는 일반 문서와 달리 하이퍼링크로 서로 연결된 구조를 가진다. 이 하이퍼링크 정보는 대상문서와 연관도가 높은 정보를 가지고 있으며, 이러한 링크 정보로부터 특징을 보다 잘 선별하기 위해서는 보다 정밀한 접근법이 필요하다. 본 논문은 단어간 의미 유사도를 기반으로 하이퍼텍스트 링크 정보를 활용한 특징 가공기법을 제안한다. 제안 기법은 하이퍼링크 문서로부터 대상문서와 연관도가 높은 특징을 추출하기 위해 단어간 유사도 함수를 사용하며, 유사도 함수는 워드넷의 상/하위어 관계를 이용한다. 그리고 추출된 특징들 중 의미적으로 비슷한 개념의 특징들을 합병함으로써 의미적으로 보다 견고한 분류 모델을 구축한다. 제안 기법을 검증하기 위해 Web-KB 문서집합을 이용하여 실험을 수행하였고 실험 결과 기존 방법보다 우수한 성능을 보였다.

Graph-Based Word Sense Disambiguation Using Iterative Approach (반복적 기법을 사용한 그래프 기반 단어 모호성 해소)

  • Kang, Sangwoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • Current word sense disambiguation techniques employ various machine learning-based methods. Various approaches have been proposed to address this problem, including the knowledge base approach. This approach defines the sense of an ambiguous word in accordance with knowledge base information with no training corpus. In unsupervised learning techniques that use a knowledge base approach, graph-based and similarity-based methods have been the main research areas. The graph-based method has the advantage of constructing a semantic graph that delineates all paths between different senses that an ambiguous word may have. However, unnecessary semantic paths may be introduced, thereby increasing the risk of errors. To solve this problem and construct a fine-grained graph, in this paper, we propose a model that iteratively constructs the graph while eliminating unnecessary nodes and edges, i.e., senses and semantic paths. The hybrid similarity estimation model was applied to estimate a more accurate sense in the constructed semantic graph. Because the proposed model uses BabelNet, a multilingual lexical knowledge base, the model is not limited to a specific language.

Word Sense Similarity Clustering Based on Vector Space Model and HAL (벡터 공간 모델과 HAL에 기초한 단어 의미 유사성 군집)

  • Kim, Dong-Sung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.3
    • /
    • pp.295-322
    • /
    • 2012
  • In this paper, we cluster similar word senses applying vector space model and HAL (Hyperspace Analog to Language). HAL measures corelation among words through a certain size of context (Lund and Burgess 1996). The similarity measurement between a word pair is cosine similarity based on the vector space model, which reduces distortion of space between high frequency words and low frequency words (Salton et al. 1975, Widdows 2004). We use PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) to reduce a large amount of dimensions caused by similarity matrix. For sense similarity clustering, we adopt supervised and non-supervised learning methods. For non-supervised method, we use clustering. For supervised method, we use SVM (Support Vector Machine), Naive Bayes Classifier, and Maximum Entropy Method.

  • PDF

A Semantic Similarity Measure for Retrieving Software Components (소프트웨어 부품의 검색을 위한 의미 유사도 측정)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1443-1452
    • /
    • 1996
  • In this paper, we propose a semantic similarity measure for reusable software components, which aims to provide the automatic classification process of reusable to be stored in the structure of a software library, and to provide an efficient retrieval method of the software components satisfying the user's requirements. We have identified the facets to represent component characteristics by extracting information from the component descriptions written in a natural language, composed the software component identifiers from the automatically extracted terms corresponding to each facets, and stored them which the components in the nearest locations according to the semantic similarity of the classified components. In order to retrieve components satisfying user's requirements, we measured a semantic similarity between the queries and the stored components in the software library. As a result of using the semantic similarity to retrieve reusable components, we could not only retrieve the set of components satisfying user's queries. but also reduce the retrieval time of components of user's request. And we further improve the overall retrieval efficiency by assigning relevance ranking to the retrieved components according to the degree of query satisfaction.

  • PDF

Similar Patent Search Service System using Latent Dirichlet Allocation (잠재 의미 분석을 적용한 유사 특허 검색 서비스 시스템)

  • Lim, HyunKeun;Kim, Jaeyoon;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1049-1054
    • /
    • 2018
  • Keyword searching used in the past as a method of finding similar patents, and automated classification by machine learning is using in recently. Keyword searching is a method of analyzing data that is formalized through data refinement. While the accuracy for short text is high, long one consisted of several words like as document that is not able to analyze the meaning contained in sentences. In semantic analysis level, the method of automatic classification is used to classify sentences composed of several words by unstructured data analysis. There was an attempt to find similar documents by combining the two methods. However, it have a problem in the algorithm w the methods of analysis are different ways to use simultaneous unstructured data and regular data. In this paper, we study the method of extracting keywords implied in the document and using the LDA(Latent Semantic Analysis) method to classify documents efficiently without human intervention and finding similar patents.

과학의 시대에서 본 영성의 심리학적 의미

  • Lee, Na-Mi
    • Health and Mission
    • /
    • s.5
    • /
    • pp.35-39
    • /
    • 2006
  • 과학의 시대에 일방적인 질주를 경계하고 정신세계에 관심을 두고 있는 영성의 심리학적 의미를 되짚어 보고 영성, 혹은 Spritiuality 개념 양쪽에 숨어 있는 심리학적 의미와 정신분석학의 유사점에 대해 논의해 본다.

  • PDF

Image Content Modeling for Meaning-based Retrieval (의미 기반 검색을 위한 이미지 내용 모델링)

  • 나연묵
    • Journal of KIISE:Databases
    • /
    • v.30 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color. shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.

Advanced Faceted Classification Scheme and Semantic Similarity Measure for Reuse of Software Components (소프트웨어 부품의 재사용을 위한 개선된 패싯 분류 방법과 의미 유사도 측정)

  • Gang, Mun-Seol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.855-865
    • /
    • 1996
  • In this paper, we propose a automation of the classification process for reusable software component and construction method of structured software components library. In order to efficient and automatic classification of software component, we decide the facets to represent characteristics of software component by acquiring semantic and syntactic information from software components descriptions in natural language, and compose the software component identifier or automatic extract terms corresponds to each facets. And then, in order to construct the structured software components library, we sore in the near location with software components of similar characteristic according to semantic similarity of the classified software components. As the result of applying proposed method, we can easily identify similar software components, the classification process of software components become simple, and the software components store in the structured software components library.

  • PDF

Document Clustering Methods using Hierarchy of Document Contents (문서 내용의 계층화를 이용한 문서 비교 방법)

  • Hwang, Myung-Gwon;Bae, Yong-Geun;Kim, Pan-Koo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2335-2342
    • /
    • 2006
  • The current web is accumulating abundant information. In particular, text based documents are a type used very easily and frequently by human. So, numerous researches are progressed to retrieve the text documents using many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both subject and semantic of documents. So, to overcome the previous problems, we propose the document similarity method for semantic retrieval of document users want. This is the core method of document clustering. This method firstly, expresses a hierarchy semantically of document content ut gives the important hierarchy domain of document to weight. With this, we could measure the similarity between documents using both the domain weight and concepts coincidence in the domain hierarchies.