• Title/Summary/Keyword: 의미적 판별

Search Result 136, Processing Time 0.022 seconds

Multi-Document Summarization Method Based on Semantic Relationship using VAE (VAE를 이용한 의미적 연결 관계 기반 다중 문서 요약 기법)

  • Baek, Su-Jin
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.341-347
    • /
    • 2017
  • As the amount of document data increases, the user needs summarized information to understand the document. However, existing document summary research methods rely on overly simple statistics, so there is insufficient research on multiple document summaries for ambiguity of sentences and meaningful sentence generation. In this paper, we investigate semantic connection and preprocessing process to process unnecessary information. Based on the vocabulary semantic pattern information, we propose a multi-document summarization method that enhances semantic connectivity between sentences using VAE. Using sentence word vectors, we reconstruct sentences after learning from compressed information and attribute discriminators generated as latent variables, and semantic connection processing generates a natural summary sentence. Comparing the proposed method with other document summarization methods showed a fine but improved performance, which proved that semantic sentence generation and connectivity can be increased. In the future, we will study how to extend semantic connections by experimenting with various attribute settings.

A Study on Word Semantic Categories for Natural Language Question Type Classification and Answer Extraction (자연어 질의 유형판별과 응답 추출을 위한 어휘 의미체계에 관한 연구)

  • Yoon Sung-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.141-144
    • /
    • 2004
  • 질의응답 시스템이 정보검색 시스템과 다른 중요한 점은 질의 처리 과정이며, 자연어 질의 문장에서 사용자의 질의 의도를 파악하여 질의 유형을 분류하는 것이다. 본 논문에서는 질의 주-형을 분류하기 위해 복잡한 분류 규칙이나 대용량의 사전 정보를 이용하지 않고 질의 문장에서 의문사에 해당하는 어휘들을 추출하고 주변에 나타나는 명사들의 의미 정보를 이용하여 세부적인 정답 유형을 결정할 수 있는 질의 유형 분류 방법을 제안한다. 의문사가 생략된 경우의 처리 방법과 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류 성능을 향상시킬 수 있는 방법을 제안한다.

  • PDF

Malicious Web Log Identification based on Probability (확률 기반 악성댓글 판별)

  • Seong, Daegyeong;Lee, Hyunwoo;Lee, Changyeong;Kim, A-Yeong;Park, Seong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.905-908
    • /
    • 2014
  • 악성댓글은 인터넷 상에서 상대방이 올린 글에 대한 비방, 험담 등을 하는 악의적인 댓글을 의미한다. 사용자에게 스마트 모바일 기기, 소셜 네트워크 서비스 등의 편리한 서비스를 제공함에 따라 악성댓글에 대한 피해도 꾸준히 증가하고 있다. 본 논문에서 제안하는 방법은 댓글로부터 간단한 형태소 분석과 패턴 추출 과정을 거쳐 단어장을 형성한다. 단어장을 바탕으로 댓글에 포함된 단어가 악성댓글과 비악성댓글에서 나타날 확률을 구하고 이를 기반으로 주어진 댓글이 악성댓글인지 아닌지를 판별한다. 실험결과를 통하여 본 논문에서 제안하는 악성댓글을 판별하는 방법을 평가한다.

Lexicon of Semantic-Polarity of Korean Adjectives for the Classification of On-line Opinion Documents (온라인 오피니언 문서 분류를 위한 한국어 형용사 의미 극성 사전)

  • Ahn, Ae-Lim;Shim, Seung-Hye;Nam, Jee-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.166-171
    • /
    • 2010
  • 본 논문은 한국어 온라인 리뷰 문서의 오피니언 분류(Opinion Classification)에 있어 그 핵심 키워드가 형용사 (Adjective) 범주라는 점을 고려하여, 한국어 형용사를 <문맥에 의존하지 않는 절대 극성>과, <문맥에 의존하여 극성이 바뀌는 상대극성>으로 대분류한 뒤 그 각각의 의미 극성을 하위 분류하는 작업을 수행하였다. 기존의 연구에서 특징적인 오피니언 어휘 수십개에 의존하여 자동 분류를 시도하고자 하였던 문제점을 극복하기 위해서는 한국어 형용사 전체 범주에 대한 체계적인 극성 분류가 이루어져야 할 필요가 있으며, 여기서 특히 상세히 주목받지 못했던 상대 극성 어휘에 대한 본격적인 의미 분류가 요구된다. 본 연구에서 제시하는 형용사의 극성 분류는 기존의 이론 언어학적 형용사 의미 분류와 달리 온라인 오피니언 문서에서 도메인에 따라 나타나는 특징적 의미 유형을 결정하고, 이를 기준으로 온라인 오피니언 문서의 극성 판별에 효과적으로 적용할 수 있는 사전을 구축하였다는 점에서 의의를 가진다.

  • PDF

A Method for Malware Similarity Analysis based on Behavior Pattern Graph (행위 그래프를 이용한 악성코드 유사도 판별법)

  • Kim, Ji-Hun;Son, Kang-Won;Cho, Doosan;Youn, JongHee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.501-503
    • /
    • 2015
  • Malicious(악의적인) + Code 즉, 악의적인코드를 포함한 소프트웨어라는 의미로 줄여 Malware(Malicious + Software) 라고 불리는 악성코드는 최근 네트워크와 컴퓨터의 급속한 발전에 따라 기하급수적으로 증가하고 있는 추세이다. 폭발적인 증가율 추세를 보이고 있는 악성코드의 위협을 대비하기 위해 악성코드에 대한 분석이 필요한데 그 분석의 종류로는 초기분석, 동적 분석, 정적분석으로 나누고 장, 단점을 정리하였다. 또한 악성코드 대량화에 따른 효율적인 분석과 빠른 의사결정을 위한 악성코드 유사도에 대한 연구를 소개하고 API Call Sequence와 분류된 API를 이용한 악성행위 유사도 판별법을 제시하고 실험하였다.

Complete preordering of alternatives by metric distance measure (거리측정속도에 의한 대안의 전체적 유사순서결정)

  • 김영겸;이강인;이진규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.63-65
    • /
    • 1993
  • 전통적 의사결정 이론에 입각한 기존의 다기준 의사결정 모형은 명확하게 정의된 문제에 대해서 실함수로 표현된 사전의 선호정보에 의하여 모호함이 없이 확실한 선호의 판별을 산출하는 true-criterion 모형이다. 그러나 현실적인 의사결정 환경하에서 선호정보가 사전에 명확하게 하나의 실함수로 얻어지기는 매우 어렵다. 이는 곧 선호의 불확실성(fuzziness)이나 선호판별을 할 수 없는 비교불가능성(incomparability)등이 있을 수 있음을 의미한다. 1980년대 이후의 다기준의사결정 이론에 대한 연구는 불명확한 문제의 정형화나 선호의 불확실성을 인정하고, 이를 fuzzy 이론을 이용하여 모형의 설정에 반영하고 있다. 심지어는 선호관계의 비추이성(intransitivity)이나 비교불가능성까지도 인정하는 등 모형의 강건성(robustness)을 고려하는 연구가 활발하게 이루어지고 있다.

  • PDF

Speech Recognition Error Detection Using Deep Learning (딥 러닝을 이용한 음성인식 오류 판별 방법)

  • Kim, Hyun-Ho;Yun, Seung;Kim, Sang-Hun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.157-162
    • /
    • 2015
  • 자동통역(Speech-to-speech translation)의 최우선 단계인 음성인식과정에서 발생한 오류문장은 대부분 비문법적 구조를 갖거나 의미를 이해할 수 없는 문장들이다. 이러한 문장으로 자동번역을 할 경우 심각한 통역오류가 발생하게 되어 이에 대한 개선이 반드시 필요한 상황이다. 이에 본 논문에서는 음성인식 오류문장이 정상적인 인식문장에 비해 비문법적이거나 무의미하다는 특징을 이용하여 DNN(Deep Neural Network) 기반 음성인식오류 판별기를 구현하였으며 84.20%의 오류문장 분류성능결과를 얻었다.

  • PDF

Posture features and emotion predictive models for affective postures recognition (감정 자세 인식을 위한 자세특징과 감정예측 모델)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.83-94
    • /
    • 2011
  • Main researching issue in affective computing is to give a machine the ability to recognize the emotion of a person and to react it properly. Efforts in that direction have mainly focused on facial and oral cues to get emotions. Postures have been recently considered as well. This paper aims to discriminate emotions posture by identifying and measuring the saliency of posture features that play a role in affective expression. To do so, affective postures from human subjects are first collected using a motion capture system, then emotional features in posture are described with spatial ones. Through standard statistical techniques, we verified that there is a statistically significant correlation between the emotion intended by the acting subjects, and the emotion perceived by the observers. Discriminant Analysis are used to build affective posture predictive models and to measure the saliency of the proposed set of posture features in discriminating between 6 basic emotional states. The evaluation of proposed features and models are performed using a correlation between actor-observer's postures set. Quantitative experimental results show that proposed set of features discriminates well between emotions, and also that built predictive models perform well.

Discrimination model of cultivation area of Corni Fructus using a GC-MS-Based metabolomics approach (GC-MS 기반 대사체학 기법을 이용한 산수유의 산지판별모델)

  • Leem, Jae-Yoon
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • It is believed that traditional Korean medicines can be managed more scientifically through the development of logical criteria to verify their region of cultivation, and that this could contribute to the advancement of the traditional herbal medicine industry. This study attempted to determine such criteria for Sansuyu. The volatile compounds were obtained from 20 samples of domestic Corni fructus (Sansuyu) and 45 samples of Chinese Sansuyu by steam distillation. The metabolites were identified in the NIST Mass Spectral Library via the obtained gas chromatography/mass spectrometer (GC/MS) data of 53 training samples. Data binning at 0.2 min intervals was performed to normalize the number of variables used in the statistical analysis. Multivariate statistical analyses, such as principle component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and orthogonal partial least squares-discriminant analysis (OPLS-DA) were performed using the SIMCA-P software package. Significant variables with a variable importance in the projection (VIP) score higher than 1.0 were obtained from OPLS-DA, and variables that resulted in a p-value of less than 0.05 through one-way ANOVA were selected to verify the marker compounds. Finally, among the 11 variables extracted, 1-ethylbutyl-hydroperoxide (9.089 min), nonadecane (20.170 min), butylated hydroxytoluene (25.319 min), 5β,7βH,10α-eudesm-11-en-1α-ol (25.921 min), 7,9-bis(2-methyl-2-propanyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (34.257 min), and 2-decyldodecyl-benzene (54.717 min) were selected as markers to indicate the origin of Sansuyu. The statistical model developed was suitable for the determination of the geographical origin of Sansuyu. The cultivation areas of four Korean and eight Chinese Sansuyu samples were predicted via the established OPLS-DA model, and it was confirmed that 11 of the 12 samples were accurately classified.

자리바꾸기 문제를 활용한 수학적 창의성의 발현 과정 연구

  • Kim, Bu-Yun;Lee, Ji-Seong
    • Communications of Mathematical Education
    • /
    • v.19 no.2 s.22
    • /
    • pp.327-344
    • /
    • 2005
  • 솔리테르(solitaire) 중 간단한 게임인 자리바꾸기 문제에 대해 학습자로 하여금 다양한 해결방법을 산출 하도록 한 후, 그 과정에서 학생들의 수학적 창의성의 발현 과정을 추적해 본다. 제시한 문제 해결 과제에 대한 학습자들의 반응과 해답을 분석함으로써 수학적 창의성에서의 인지적 구성요소인 확산성, 유창성, 논리성, 유연성, 독창성과 정의적 구성요소에 해당하는 적극성, 독자성, 집중성, 정밀성 등이 어떻게 나타나고 있는가를 살펴본다. 또한 그렇게 함으로써 각 구성요소의 의미와 특성을 규명하고자 하며, 나아가 이들 구성요소를 판별할 수 있는 방안에 대한 기초 자료를 제공하고자 한다.

  • PDF