• Title/Summary/Keyword: 의미적 토픽

Search Result 128, Processing Time 0.024 seconds

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

Research Trends on Emotional Labor in Korea using text mining (텍스트마이닝을 활용한 감정노동 연구 동향 분석)

  • Cho, Kyoung-Won;Han, Na-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.119-133
    • /
    • 2021
  • Research has been conducted in many fields to identify research trends using text mining, but in the field of emotional labor, no research has been conducted using text mining to identify research trends. This study uses text mining to deeply analyze 1,465 papers at the Korea Citation Index (KCI) from 2004 to 2019 containing the subject word 'emotional labor' to understand the trend of emotional labor researches. Topics were extracted by LDA analysis, and IDM analysis was performed to confirm the proportion and similarity of the topics. Through these methods, an integrated analysis of topics was conducted considering the usefulness of topics with high similarity. The research topics are divided into 11 categories in descending order: stress of emotional labor (12.2%), emotional labor and social support (12.0%), customer service workers' emotional labor (10.9%), emotional labor and resilience (10.2%), emotional labor strategy (9.2%), call center counselor's emotional labor (9.1%), results of emotional labor (9.0%), emotional labor and job exhaustion (7.9%), emotional intelligence (7.1%), preliminary care service workers' emotional labor (6.6%), emotional labor and organizational culture (5.9%). Through topic modeling and trend analysis, the research trend of emotional labor and the academic progress are analyzed to present the direction of emotional labor research, and it is expected that a practical strategy for emotional labor can be established.

A Study on the Derivation of Port Safety Risk Factors Using by Topic Modeling (토픽모델링을 활용한 항만안전 위험요인 도출에 관한 연구)

  • Lee Jeong-Min;Kim Yul-Seong
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • In this study, we tried to find out port safety from various perspectives through news data that can be easily accessed by the general public and domestic academic journal data that reflects the insights of port researchers. Non-negative Matrix Factorization(NMF) based topic modeling was conducted using Python to derive the main topics for each data, and then semantic analysis was conducted for each topic. The news data mainly derived natural and environmental factors among port safety risk factors, and the academic journal data derived security factors, mechanical factors, human factors, environmental factors, and natural factors. Through this, the need for strategies to strengthen the safety of domestic ports, such as strengthening the resilience of port safety, improve safety awareness to broaden the public's view of port safety, and conduct research to develop the port industry environment into a safe and specialized mature port. As a result, this study identified the main factors to be improved and provided basic data to develop into a mature port with a port safety culture.

Investigating the Trends of Research for the Age of Youth at 20s (20대 청년세대에 관한 연구 동향 분석)

  • Bang, Mi-Hyun;Lee, Young-Min
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.223-232
    • /
    • 2020
  • This study aims to examine the trend of research articles for the age of youth at 20s during 10 years through topic modeling and keyword network analysis. In results, 'incomes', 'program', 'business start-up', and 'culture' were selected as main keywords, and the research articles were classified into six topics, which were employment support services, values, unstable life, government support policies, religious views, and business start-up support services. Additionally, we found the youth at 20s had higher rate of efficacy for digital technology, pursued efficient consumption of digital information, showed meaningful and athetical patterns of consumption, tried to search for their identity, and showed realistic action in daily. Finally, we raised some questions for value gap among aging groups, inbalance of regional development, and income inequality and suggested long-term youth policies to solve fundamental problems of youth at 20s.

Topic Analysis of the "Right to be Forgotten" Using Text Mining (텍스트마이닝을 활용한 "잊힐 권리"의 토픽 분석)

  • Lee, So-Hyun;Koo, Bon-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.2
    • /
    • pp.275-298
    • /
    • 2022
  • This study examined the issues and characteristics that appeared in news and journal articles related to the 'right to be forgotten' using text mining analysis. Data for analysis were collected from 2010 to 2020 with the keyword 'right to be forgotten'. Keyword analysis and topic modeling analysis were performed on the collected data. As a result, in the last 10 years the issues about 'right to be forgotten' are not much different in news and journal articles and the approaches also are similar. However, it confirmed common issues and the partial difference between news and journal articles through comparison. Therefore in Archives and Records Management Studies, it is necessary to discuss derived in this study. In particular common issues are considered first but if there are differences in issues, it is needed to discuss them in various ways. This study is meaningful to understand the meaning and to draw issues that may arise in the future of the 'right to be forgotten'. The results of this study will contribute to be variously discussed on the 'right to be forgotten' in Archives and Records Management Studies.

Identifying Research Trends in Big data-driven Digital Transformation Using Text Mining (텍스트마이닝을 활용한 빅데이터 기반의 디지털 트랜스포메이션 연구동향 파악)

  • Minjun, Kim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.54-64
    • /
    • 2022
  • A big data-driven digital transformation is defined as a process that aims to innovate companies by triggering significant changes to their capabilities and designs through the use of big data and various technologies. For a successful big data-driven digital transformation, reviewing related literature, which enhances the understanding of research statuses and the identification of key research topics and relationships among key topics, is necessary. However, understanding and describing literature is challenging, considering its volume and variety. Establishing a common ground for central concepts is essential for science. To clarify key research topics on the big data-driven digital transformation, we carry out a comprehensive literature review by performing text mining of 439 articles. Text mining is applied to learn and identify specific topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview. A total of 10 key research topics and relationships among the topics are identified. This study contributes to clarifying a systematized view of dispersed studies on big data-driven digital transformation across multiple disciplines and encourages further academic discussions and industrial transformation.

Topic Map automatic construction Study for research information resource (학술정보자원에 대한 Topic Map 자동구축 방안)

  • Jang, Hwa-Su;Ko, Il-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.13-18
    • /
    • 2009
  • Topic Map을 구축하는데 있어서 봉착하는 문제는 특정분야 전문가들이 Topic Map의 구성과 체계에 익숙하지 않다는 점이다. 이를 해결하기 위해서 Topic Map의 모든 요소들을 새로이 작성하는 것 보다는 작성하려는 분야에 대해 기 구축된 정보자원이 존재할 경우 이를 최대한 재활용하여, 모은 요소들을 추출한 다음 Topic Map 온톨로지로 변환하고 이용하는 것이 시간과 비용을 절약할 수 있는 효율적인 방법일 것이다. 본 연구에서는 기 구축된 학술DB보부터 Topic Map에서 재활용할 수 있는 요소들을 추출하기 위한 정보 소스로서 데이터베이스 스키마와 MARC에서 언급하는 메타데이터를 이용하는 것은, 기초 학문자료의 복잡한 관계의 개념구조, 자료유형 및 자료간의 의미적 상관관계 표현에 있어 효율적인 개발방법임을 제안한다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드 임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

A Similarity-based Dialogue Modeling with Case Frame and Word Embedding (격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링)

  • Lee, Hokyung;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.220-225
    • /
    • 2016
  • 본 논문에서는 격틀과 워드 임베딩을 활용한 유사도 기반 대화 모델링을 제안한다. 기존의 유사도 기반 대화 모델링 방법은 형태소, 형태소 표지, 개체명, 토픽 자질, 핵심단어 등을 대화 말뭉치에서 추출하여 BOW(Bag Of Words) 자질로 사용하였기 때문에 입력된 사용자 발화에 포함된 단어들의 주어, 목적어와 같은 문장성분들의 위치적 역할을 반영할 수 가 없다. 또한, 의미적으로 유사하지만 다른 형태소를 가지는 문장 성분들의 경우 유사도 계산에 반영되지 않는 형태소 불일치 문제가 존재한다. 이러한 문제점을 해결하기 위해서, 위치적 정보를 반영하기 위한 문장성분 기반의 격틀과 형태소 불일치 문제를 해결하기 위한 워드임베딩을 활용하여 개선된 유사도 기반 대화 모델링을 제안한다. 개선된 유사도 기반 대화 모델링은 MRR 성능 약 92%의 성능을 나타낸다.

  • PDF

Design to Realtime Test Data Topic Utilize of Data Distribution Service (데이터 분산 서비스를 활용한 실시간 시험자료 토픽 설계)

  • Choi, Won-gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1447-1454
    • /
    • 2017
  • The realtime test data topic means that process for the data efficiently from many kinds of measurement device at the test range. There are many measurement devices in test range. The test range require accurate observation and determine on test object. In this realtime test data slaving framework system, the system can produce variety of test informations and all these data also must be transmitted to test information management or display system in realtime. Using RTI DDS(Data Distribution Service) middle ware Ver 5.2, we can product the efficiency of system usability and QoS(Quality of Service) requirements. So the application user enables to concentrate on applications, not middle ware. As the reason, Complex function is provided by the DDS, not the application such as Visualization Software. In this paper, I suggest the realtime test data topic on slaving framework of realtime test data based on DDS at the test range system.