• Title/Summary/Keyword: 의미역

Search Result 964, Processing Time 0.023 seconds

Korean Semantic Role Labeling using Stacked Bidirectional LSTM-CRFs (Stacked Bidirectional LSTM-CRFs를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.36-43
    • /
    • 2017
  • Syntactic information represents the dependency relation between predicates and arguments, and it is helpful for improving the performance of Semantic Role Labeling systems. However, syntax analysis can cause computational overhead and inherit incorrect syntactic information. To solve this problem, we exclude syntactic information and use only morpheme information to construct Semantic Role Labeling systems. In this study, we propose an end-to-end SRL system that only uses morpheme information with Stacked Bidirectional LSTM-CRFs model by extending the LSTM RNN that is suitable for sequence labeling problem. Our experimental results show that our proposed model has better performance, as compare to other models.

Semantic Role Assignment for Korean Adverbial Case Using Sejong Electronic Dictionary (세종전자사전을 이용한 한국어 부사격의 의미역 결정)

  • Shin, Myung-Chul;Lee, Yong-Hun;Kim, Mi-Young;Chung, You-Jin;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.120-126
    • /
    • 2005
  • 세종전자사전의 용언사전과 체언사전에 기재된 용언의 격틀과 명사의 의미부류는 문장의 의미분석을 위한 핵심적인 언어자원이다. 본 논문에서는 용언사전을 전산처리가 용이한 격틀사전으로 변형한 다음 이를 이용한 의미역 결정 시스템을 구축하였고 기계학습 방법에 기반한 의미역 결정 시스템과 혼합하여 한국어에 있어 '에, 로'를 격표지로 하는 부사격에 대한 의미역 결정 방법에 대해 다루고 있다.

  • PDF

Rule Construction for Determination of Thematic Roles by Using Large Corpora and Computational Dictionaries (대규모 말뭉치와 전산 언어 사전을 이용한 의미역 결정 규칙의 구축)

  • Kang, Sin-Jae;Park, Jung-Hye
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.219-228
    • /
    • 2003
  • This paper presents an efficient construction method of determination rules of thematic roles from syntactic relations in Korean language processing. This process is one of the main core of semantic analysis and an important issue to be solved in natural language processing. It is problematic to describe rules for determining thematic roles by only using general linguistic knowledge and experience, since the final result may be different according to the subjective views of researchers, and it is impossible to construct rules to cover all cases. However, our method is objective and efficient by considering large corpora, which contain practical osages of Korean language, and case frames in the Sejong Electronic Lexicon of Korean, which is being developed by dozens of Korean linguistic researchers. To determine thematic roles more correctly, our system uses syntactic relations, semantic classes, morpheme information, position of double subject. Especially by using semantic classes, we can increase the applicability of the rules.

Layer Normalized LSTM CRFs for Korean Semantic Role Labeling (Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정)

  • Park, Kwang-Hyeon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

Layer Normalized LSTM CRFs for Korean Semantic Role Labeling (Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정)

  • Park, Kwang-Hyeon;Na, Seung-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

Korean Semantic Role Labeling Using Semantic Frames and Synonym Clusters (의미 프레임과 유의어 클러스터를 이용한 한국어 의미역 인식)

  • Lim, Soojong;Lim, Joon-Ho;Lee, Chung-Hee;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.773-780
    • /
    • 2016
  • Semantic information and features are very important for Semantic Role Labeling(SRL) though many SRL systems based on machine learning mainly adopt lexical and syntactic features. Previous SRL research based on semantic information is very few because using semantic information is very restricted. We proposed the SRL system which adopts semantic information, such as named entity, word sense disambiguation, filtering adjunct role based on sense, synonym cluster, frame extension based on synonym dictionary and joint rule of syntactic-semantic information, and modified verb-specific numbered roles, etc. According to our experimentations, the proposed present method outperforms those of lexical-syntactic based research works by about 3.77 (Korean Propbank) to 8.05 (Exobrain Corpus) F1-scores.

Korean Semantic Role Labeling Using Domain Adaptation Technique (도메인 적응 기술을 이용한 한국어 의미역 인식)

  • Lim, Soojong;Bae, Yongjin;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.56-60
    • /
    • 2014
  • 기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.

  • PDF

Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization (격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정)

  • Kim, Wan-Su;Ock, Cheol-Young
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1376-1384
    • /
    • 2016
  • Computers require analytic and processing capability for all possibilities of human expression in order to process sentences like human beings. Linguistic information processing thus forms the initial basis. When analyzing a sentence syntactically, it is necessary to divide the sentence into components, find obligatory arguments focusing on predicates, identify the sentence core, and understand semantic relations between the arguments and predicates. In this study, the method applied a case frame dictionary based on The Korean Standard Dictionary of The National Institute of the Korean Language; in addition, we used a CRF Model that constructed subcategorization of predicates as featured in Korean Lexical Semantic Network (UWordMap) for semantic role labeling. Automatically tagged semantic roles based on the CRF model, which established the information of words, predicates, the case-frame dictionary and hypernyms of words as features, were used. This method demonstrated higher performance in comparison with the existing method, with accuracy rate of 83.13% as compared to 81.2%, respectively.

Semantic Role Labeling using Biaffine Average Attention Model (Biaffine Average Attention 모델을 이용한 의미역 결정)

  • Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.662-667
    • /
    • 2022
  • Semantic role labeling task(SRL) is to extract predicate and arguments such as agent, patient, place, time. In the previously SRL task studies, a pipeline method extracting linguistic features of sentence has been proposed, but in this method, errors of each extraction work in the pipeline affect semantic role labeling performance. Therefore, methods using End-to-End neural network model have recently been proposed. In this paper, we propose a neural network model using the Biaffine Average Attention model for SRL task. The proposed model consists of a structure that can focus on the entire sentence information regardless of the distance between the predicate in the sentence and the arguments, instead of LSTM model that uses the surrounding information for prediction of a specific token proposed in the previous studies. For evaluation, we used F1 scores to compare two models based BERT model that proposed in existing studies using F1 scores, and found that 76.21% performance was higher than comparison models.

Bootstrapping for Semantic Role Assignment of Korean Case Marker (부트스트래핑 알고리즘을 이용한 한국어 격조사의 의미역 결정)

  • Kim Byoung-Soo;Lee Yong-Hun;Na Seung-Hoon;Kim Jun-Gi;Lee Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.4-6
    • /
    • 2006
  • 본 논문은 자연언어처리에서 문장의 서술어와 그 서술어가 가지는 명사 논항들 사이의 문법관계를 의미 관계로 사상하는 즉 논항이 서술어에 대해 가지는 역할을 정하는 문제를 다루고 있다. 의미역 결정은 단어의 의미 중의성 해소와 함께 자연언어의 의미 분석의 핵심 문제 중 하나이며 반드시 해결해야 하는 매우 중요한 문제 중 하나이다. 본 연구에서는 언어학적으로 유용한 자원인 세종전자사전을 이용하여 용언격틀사전을 구축하고 격틀 선택 방법으로 의미역을 결정한 후. 결정된 의미역들에 대한 확률 정보를 확률 모델에 적용하여 반복적으로 학습하는 부트스트래핑(Bootstrapping) 알고리즘을 사용하였다. 실험 결과, 기본 모델에 대해 10% 정도의 성능 향상을 보였다.

  • PDF