• Title/Summary/Keyword: 의료용 Data 전송

Search Result 35, Processing Time 0.029 seconds

A Study on Implementation for Wireless Data Transmission Platform for Medical care using ARM11 (ARM11 기반의 의료용 무선 데이터 전송 플랫폼 구현에 관한 연구)

  • Seo, Jae-Gil;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.425-430
    • /
    • 2009
  • In medical area, lots of information has been digitized and the desire of personnel health became a matter of primary concern. To satisfy this desire it requires the high-speed handhold Healthcare monitering platform for building U-health system. This paper represents that the implementation of s3c6000 platform with s3c6400 CPU using up-to-date ARM11 technology. This parer also represents building of network system with wireless LAN based on 802.11 in order to transmit medical data. Transmitting and monitoring personnel medical data will be possible in any place with wireless LAN network.

A Proposal for Improving Techniques of GTS Utilization Based on WBAN (WBAN 기반의 GTS 채널 이용률 향상기법 제안)

  • Park, Joo-Hee;Jung, Won-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.73-81
    • /
    • 2011
  • The WBAN(Wireless Body Area Network) technology is a short distance wireless network which provides each device's interactive communication by connecting devices inside and outside of body located within 3 meters. Standardization on the physical layer, data link layer, network layer and application layer is in progress by IEEE 802.15.6 TG BAN. The The WBAN servides consists of both medical and non-medical applications. The medical application service uses the sensor that transfer the periodic traffic and have different data rates. It uses GTS method to guarantee QoS. In this paper, a new method is proposed, which are suitable design for MAC Protocol. Firstly, MAC frame structure and a primitive based on the WBAN are proposed. Secondly, we proposed the GTS algorithm improved the channel utilization based on the WFQ(Weighted Fair Queuing). The proposed scheduling method is improved channel utilization compared with i-Game(Round Robin scheduling method).

Algorithm of GTS Time Slots Allocation Based on Weighted Fair Queuing in Environments of WBAN (WBAN 환경에서 Weighted Fair Queuing 기반의 GTS 타임 슬롯 할당 알고리즘)

  • Kim, Kyoung-Mok;Jung, Won-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.45-56
    • /
    • 2011
  • WBAN is short range wireless communication technology which is consists of several small devices close to, attached to or implanted into the human body. WBAN is classified into between medical and non-medical by applications based on technology and medical data with periodic characteristics is used the GTS method for transmitting data to guarantee the QoS. In this paper we proposed algorithm that resolve lack of GTSs while data transmit GTS method in superframe structure of WBAN. Coordinator dynamically allocates GTSs according to the data rate of devices and make devices share GTSs when lack of GTSs. We compared delay bounds, throughput for performance evaluation of the proposed algorithm. In other words, we proposed algorithm adaptive WFQ scheduling that GTS allocation support differential data rate in environments of WBAN. The experiment results show the throughput increased and the maximum delay decreased compared with Round Robin scheduling.

A Study on High Speed Transmission System of Medical Information Based on PXA255 (PXA255기반 의료정보 고속 전송 시스템에 관한 연구)

  • Han Young-Jae;Yu Ho-Jun;Kim Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.386-389
    • /
    • 2006
  • At ubiquitous environment of the future, the platform that is mobile and suitable in such environment transmit and receive many data freely. In medical treatment field, medical device with advancement of the sensor and multimedia technique will develop as the household and hand-held device. So It will be developed as the health care device easily exchanging data to other devices and transmitting information of medical device to server. In this paper, currently the mobile platform based on the PXA255 such as a powerful microprocessor which connected the WLAN for guaranteeing a mobility and a speed transmits medical information to hospital server. It put an importance in providing the system for an efficient service.

  • PDF

Design of Departmental PACS for DICOM Data Management (DICOM 데이터관리를 위한 Departmental PACS 설계)

  • Kim, Sung-Hyun;Jeon, Jae-Hwan;Kim, Gwan-Hyung;Kang, Sung-In;Oh, Am-Suk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.187-189
    • /
    • 2010
  • 본 논문에서는 현재 의료부분에 많은 혜택을 주는 PACS라는 시스템을 중소병원에 맞게 설계하였다. PACS는 초기 도입 비용과 불확실한 투자효과에 의해서 많은 개인, 중소병원들이 도입하기 어려워하는 시스템 중 하나였다. 그러한 문제점으로 현재 대형병원에서만 사용 중인 PACS를 중소 병원급 PACS 시스템으로 연구하는데 있다. 본 논문에서는 기존의 병원 정보 시스템을 수용하면서도 Full PACS의 네트워크 관리모듈의 비중과 시스템 연동을 위한 WorkList Server 기능을 제한하고 특정기기에 대한 생산성 향상을 목적으로 전체가 아닌 단위별로 운영되는 중소병원용 Departmental PACS에 대해 기술하였다.

  • PDF

Design of UWB/WiFi Module based Wireless Transmission for Endoscopic Camera (UWB/WiFi 모듈 기반의 내시경 카메라용 무선전송 설계)

  • Shim, Dongha;Lee, Jaegon;Yi, Jaeson;Cha, Jaesang;Kang, Mingoo
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Ultra-wide-angle wireless endoscopes are demonstrated in this paper. The endoscope is composed of an ultra-wide-angle camera module and wireless transmission module. A lens unit with the ultra-wide FOV of 162 degrees is designed and manufactured. The lens, image sensor, and camera processor unit are packaged together in a $3{\times}3{\times}9-cm3$ case. The wireless transmission modules are implemented based on UWB- and WiFi-based platform, respectively. The UWB-based module can transmit HD video to a computer in resolution of $2048{\times}1536$ (QXGA) and the frame rate of 15 fps in MJPEG compression mode. The maximum data transfer rate reaches 41.2 Mbps. The FOV and the resolution of the endoscope is comparable to a medical-grade endoscope. The FOV and resolution is ~3X and 16X higher than that of a commercial high-performance WiFi endoscope, respectively. The WiFi-based module streams out video to a smart device with th maximum date transfer rate of 1.5 Mbps at the resolution of $640{\times}480$ (VGA) and the frame rate of 30 fps in MJPEG compression mode. The implemented components show the feasibility of cheap medical-grade wireless electronic endoscopes, which can be effectively used in u-healthcare, emergency treatment, home-healthcare, remote diagnosis, etc.

Study on Wireless Body Area Network System Design Based on Transmission Rate (전송률을 고려한 WBAN 시스템 설계에 관한 연구)

  • Park, Joo-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.121-129
    • /
    • 2012
  • In this paper, we proposed WBAN system model to management an application that requires low rate data transfer in IEEE 802.15.4. We have to use different wireless sensor network technology to transfer different date rate and emergency message in medical application service. A suitable system model for WBAN and a WBAN MAC protocol in order to solve these existing system problems are proposed. Firstly, the priority queuing was applied to contention access period, and the system model which could guarantee transmission of a MAC command frame was proposed. Secondly, the MAC frame was newly defined to use the system model which was proposed above. Thirdly, WBAN CSMA/CA back-off algorithm based on data transmission rate was proposed to enhance data throughput and transmission probability of the data frame which does not have priority in the proposed WBAN system. The proposed algorithm is designed to be variable CSMA/CA algorithm parameter, depending on data rate. For the evaluation of WBAN CSMA/CA algorithm, we used Castalia. As a result of the simulation, it is found that the proposed system model can not only relieve loads of data processing, but also probability of collision was decreased.

The medical 3-dimensional image exchange via health level 7 fast healthcare interoperability resource (HL7 FHIR) (Health level 7 fast healthcare interoperability resource (HL7 FHIR)를 통한 3차원 의료 영상의 교환)

  • Lee, Jung Hwan;Choi, Byung Kwan;Han, In Ho
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.373-378
    • /
    • 2020
  • For improving interoperability of medical information, health level 7 has initiated the development of a next-generation framework for the exchange of medical information called the Fast health interoperability resources (FHIR). However, there was no attempt to exchange the medical three-dimensional (3D) image with clinical data via FHIR. Thus, we designed a new method. The 3D image to be made from computed tomography was converted to the javascript object notation (JSON) file format, and clinical data was added. We made a test FHIR server, and the client used the postman. The JSON file was attached to the body, and was then transmitted. The transmitted 3D image could be seen through a web browser, and attached clinical data was identified in the source code. This is the first attempt to exchange the medical 3D image. Additional researches will be needed to develop applications or FHIR resources that apply this method.

The Data Transmission of Image Storage System of PACS (PACS내 영상저장 장치의 데이터 전송)

  • Cho, EuyHyun;Park, Jeongkyu
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.785-791
    • /
    • 2018
  • Recently, Disk array is widely used as a long term storage device in PACS, but reliability is not enough in relation to annual failure rate of disk. Between October 2016 and February 2017, we scanned the serial port of the hard disk while reading or storing medical images on a PACS reader. The data rate was calculated from the data stored in HDD 99ea that were used in the PCAS image storage device and in HDD 101ea that were used in the Personal Computer. When a CT image was read from a PACS reader, Reading was 87.8% and Writing was 12.2% in units of several tens of megabytes or less. When the CT image was stored in the PACS reader, Reading was 11.4% and Writing was 88.6% in units of several tens of megabytes or less. While reading the excel file on the personal computer, Reading was 75% and Writing was 25% in less than 3 MB, and In the process of storing the excel file on the personal computer, Reading was carried out by 38% and Writing was carreid out 62% in the units of 3 MB or less. The transfer rate of the hard disk used in the PACS image storage device was 10 GB/h, and the transfer rate per hour of the hard disk of the personal computer was 5 GB / h. Annual failure rate of hard disk of image storage system is 0.97 ~ 1.13%, Annual failure rate of Hard Disk of personal computer is 0.97 ~ 1.13%. the higher transfer rate is, the higher annual failure rate is. These results will be used as a basis for predicting the life expectancy of the hard disk and the annual failure rate.