• Title/Summary/Keyword: 의료용 선형가속기(LINAC)

Search Result 26, Processing Time 0.017 seconds

Development of Monitor Chamber Prototype and Basic Performance Testing (모니터 전리함 시작품 개발과 기초 성능 평가)

  • Lee, Mujin;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Rhee, Dong Joo;Kang, Sang Koo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The monitor chamber is a real time dosimetry device for the measurement and the control of radiation beam intensity of the linac system. The monitor chamber prototype was developed for monitoring and controlling radiation beam from the linac based radiation generator. The thin flexible printed circuit boards were used for electrodes of the two independent plane-parallel ionization chambers to minimize the attenuation of radiation beam. The dosimetric characteristics, saturation and linearity of the measured charge, were experimentally evaluated with the Co-60 gamma rays. The performance of the developed monitor chamber prototype was in an acceptable range and this study shows the possibility of the further development of the chamber with additional functions.

High voltage Pulsed Power modulator for medical LINAC applications (의료용 선형가속기 응용분야를 위한 고전압 펄스 전원 모듈레이터)

  • Jo, Hyun-Bin;Song, Seung-Ho;Lee, Seung-Hee;Park, Su-Mi;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.101-103
    • /
    • 2018
  • This paper describes -40kV high voltage solid state pulse power modulator (SSPPM) for driving a magnetron, which is used as a RF power source of LINAC for cancer treatment systems. In case of the medical LINAC, small size and light weight are required. The SSPPM is 92 liters in size and weighs 50 kg. In this paper, S-band 2.6 MW magnetron load experiment is conducted and impedance matching was applied to obtain a smooth output current. Finally, the experimental results is discussed and the reliability of SSPPM is verified.

  • PDF

A study on the calculation of the shielding wall thickness in Medical Linear Accelerator (의료용 선형가속기 차폐벽의 두께 산정에 관한 연구)

  • Lee, Dong-Yeon;Park, Eun-Tae;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.281-287
    • /
    • 2017
  • The purpose of this study is to calculate the thickness of shielding for concrete which is mainly used for radiation shielding and study of the walls constructed to shield medical linear accelerator. The optimal shielding thickness was calculated using MCNPX(Ver.2.5.0) for 10 MV of photon beam energy generated by linear accelerator. As a result, the TVL for photon shielding was formed at 50~100 cm for pure concrete and concrete with Boron+polyethylene at 80~100 cm. The neutron shielding was calculated 100~140 cm for pure concrete and concrete with Boron+polyethylene at 90~100 cm. Based on this study, the concrete is considered to be most efficient method of using steel plates and adding Boron+polyethylene th the concrete.

Development of Unfolding Energy Spectrum with Clinical Linear Accelerator based on Transmission Data (물질투과율 측정정보 기반 의료용 선형가속기의 에너지스펙트럼 유도기술 개발)

  • Choi, Hyun Joon;Park, Hyo Jun;Yoo, Do Hyeon;Kim, Byoung-Chul;Yi, Chul-Young;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Background: For the accurate dose assessment in radiation therapy, energy spectrum of the photon beam generated from the linac head is essential. The aim of this study is to develop the technique to accurately unfolding the energy spectrum with the transmission analysis method. Materials and Methods: Clinical linear accelerator and Monet Carlo method was employed to evaluate the transmission signals according to the thickness of the observer material, and then the response function of the ion chamber response was determined with the mono energy beam. Finally the energy spectrum was unfolded with HEPROW program. Elekta Synergy Flatform and Geant4 tool kits was used in this study. Results and Discussion: In the comparison between calculated and measured transmission signals using aluminum alloy as an attenuator, root mean squared error was 0.43%. In the comparison between unfolded spectrum using HEPROW program and calculated spectrum using Geant4, the difference of peak and mean energy were 0.066 and 0.03 MeV, respectively. However, for the accurate prediction of the energy spectrum, additional experiment with various type of material and improvement of the unfolding program is required. Conclusion: In this research, it is demonstrated that unfolding spectra technique could be used in megavoltage photon beam with aluminum alloy and HEPROW program.

Measurement of Energy Parameters for Electron Gun Heater Currents and Output Dose Rate for Electron Beams from a Prototype Linac (연구용 선형가속기의 전자총 가열 전류에 따른 전자선의 에너지 인자 측정과 출력 측정 연구)

  • Lim, Heuijin;Lee, Manwoo;Kim, Me Young;Yi, Jungyu;Lee, Mujin;Kang, Sang Ku;Rhee, Dong Joo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2016
  • The dosimetric characteristics were experimentally evaluated for electron beams from the prototype linac developed for radiotherapy units. This paper focuses on the electron beam output and energy variations as a function of electron gun heater current. The electron energy was derived from its mean and most probable energies measured by film dosimetry. The electron beam output at the maximum electron energy was measured with the plane parallel ionization chamber in water using TRS-398 dosimetry protocol. The mean energy and the most probable energy of the electron beam were 6.54~3.31 MeV and 5.94~2.80 MeV at electron gun current of 2.02~2.50 A respectively. The output dose rate for an electron beam of mean energy 6.54 MeV was 5.41 Gy/min ${\pm}1.5%$ at the reference depth in water.

The Study of Dose Distribution according to the Using Linac and Tomotherapy on Total Lymphnode Irradiation (선형가속기와 토모치료기를 이용한 전림프계의 방사선 치료시 선량분포에 관한 연구)

  • Kim, Youngjae;Seol, Gwanguk
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.285-291
    • /
    • 2013
  • In this study, compare and analyze the dose distribution and availability of radiation therapy when using a different devices to TNI(Total Lymphnodal Irradiation). Test subjects(patients) are 15 people(Male 7, Female 8). Acquire CT Simulation images of the 15 people using Somatom Sansation Open 16 channel and then acquired images was transferred to each treatment planning system Pinnacle Ver 8.0 and Tomotherapy Planning System and separate the tumor tissue and normal tissues(whole lung, spinal cord, Rt kidney, Lt kidney). Tumor prescription dose was set to 750 cGy. and then Compare the Dose Compatibility, Normal Tissue's Absorbed Dose, Dose Distribution and DVH. Statistical analysis was performed SPSS Ver. 18.0 by paired sample Assay. The absorbed dose in the tumor tissue was $751.0{\pm}4.7cGy$ in tomotherapy planning, $746.9{\pm}14.1cGy$ in linac. Tomotherapy's absorbed dose in the tumor was more appropriate than linac. and These values are not statistically significant(p>0.05). Tomotherapy plan's absorbed dose in the normal tissues were less than linac's plan. This value was statistically significant(p<0.05) excepted of whole lung. In DVH, appropriated on tumor and normal tissues in tomotherapy and linac but tomotherapy's TER was better than linac. Namely, a result of Absorbed dose in tumor and normal tissue, Dose distribution pattern, DVH, Both radiation therapy devices were appropriated in radiation therapy on TER. The Linac has a short treatment time(about 15-20 min) and open space on treatment time. It cause infant and pediatric patients to receiving uncomfortable treatment. So, In this case, it will be fine that Linac based therapy was restricted use. and if the patient was cooperative, it will be show a better prognosis that Tomotherapy using Radiation Therapy.

Study on the 6 MV Photon Beam Characteristics and Analysis Method from Medical Linear Accelerators Using Geant4 Medical Linac2 Example (GEANT4 Medical Linac2 예제를 이용한 6 MV 선형가속기 광자선속의 기초특성과 연구방법)

  • Kim, Byung-Yong;Kim, Hyung-Dong;Kim, Sung-Jin;Oh, Se-An;Kang, Jung-Gu;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • In this study, Geant4 based Monte Carlo simulations were carried out for medical linear accelerator. Modified Medical Linac2 toolkit was used for calculation. The energy spectrum, most probable energy and the photon mean energy compared with the published results using the EGS4 code. The results well agreed with published results. The calculated results of photon fluence, energy fluence and mean energy according to the radius from the centre of the beam were analyzed. Monte Carlo simulation using Medical Linac2 code is considered to be useful for analysis of medical linear accelerator. Because the calculated results varies depending on Physics List model for same head structure. It it important to choose the right model for research purpose. Monte Carlo simulation using GEANT4 Medical Linac2 is a valuable for any novice to adopt this code to the study related to 6 MV photon fluence from medical linear accelerator.

Development of Dual-Window Phantom for Output Measurement of Medical Linacs (의료용 선형가속기 출력측정용 듀얼윈도우 팬텀 개발)

  • Jeong, Dong Hyeok;Kwak, Dong Won;Moon, Young Min;Kang, Yeong-Rok;Kim, Jeung Kee;Lee, Man Woo
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2012
  • A small water phantom (dual-window phantom) was developed to improve the output measurement efficiency of medical linacs. This phantom is suitable for determining the quality index and output dose for high-energy photon beams. The phantom has two opposite windows and two independently rotating axes. The two axes measure the tissue phantom ratio (TPR) and the percentage depth dose (PDD) simply without requiring chamber movement by rotating the phantom around its axis. High-energy photon beams from a Co-60 irradiator and a medical linac were used to evaluate the phantom. The measured quality index is in good agreement with the reference values; the measured and reference values are within 0.2% of each other for the Co-60 gamma rays and within 1.4% for 6 and 10 MV X-rays. This phantom is more practical for routine output measurements, resulting in the prevention of potential human errors.

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Evaluation of Dose Distribution of 6 MV X-ray using Optical Dosimetry (광 도시메트리시스템을 이용한 치료용 6 MV X선 선량분포 평가)

  • Kim, Sunghwan
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.925-932
    • /
    • 2019
  • In this paper, we developed optical dosimetry system with a plastic scintillator, a commercial 50 mm, f1.8 lens, and a commercial high-sensitivity CMOS (complementary metal-oxide semiconductor) camera. And, the correction processors of vignetting, geometrical distortion and scaling were established. Using the developed system, we can measured a percent depth dose, a beam profile and a dose linearity for 6 MV medical LINAC (Linear Accelerator). As results, the optically measured percent depth dose was well matched with the measured percent depth dose by ion-chamber within 2% tolerance. And the determined flatness was 2.8%. We concluded that the optical dosimetry system was sufficient for application of absorbed dose monitoring during radiation therapy.