최근 의료영상의 발전에 따라 의료 영상 생성에 대한 다양한 연구가 제안되고 있는데, 이와 관련하여 생성된 의료 영상의 품질과 다양성을 정확하게 평가하는 것이 중요해지고 있다. 생성된 의료 영상을 평가하는 방법으로는 전문가의 시각적 튜링 테스트(visual turing test), 특징 분포 시각화, IS, FID를 통한 정량적 평가를 통해 평가하고 있으나 의료 영상을 품질(fidelity)과 다양성(diversity) 측면에서 정량적으로 평가 하는 방법은 거의 이루어지고 있지 않다. 본 논문에서는 DCGAN과 PGGAN 생성 모델을 통해 비소세포폐암 환자의 흉부 CT 데이터 셋을 학습하여 영상을 생성하고, 이를 품질(fidelity)과 다양성(diversity) 측면에서 두 생성 모델의 성능을 평가한다. 1차원 점수 기반 평가방법인 IS, FID와 2차원 점수 기반 평가방법인 Precision 및 Recall, 개선된 Precision 및 Recall을 통해 성능을 정량적으로 평가하고, 의료영상에서의 각 평가방법들의 특징과 한계점에 대해서도 분석한다.
본 연구에서는 국내 공공 부문에서 실시하고 있는 의료기관 평가 중 영상검사와 관련된 현황을 살펴보고 개선 방향을 제시하고자 하였다. 의료기관 평가 중 영상검사와 관련된 주요 평가는 의료기관 인증평가와 영상검사 적정성 평가가 있으며, 의료기관 인증평가에서는 영상검사 운영과정, 정확한 결과 제공, 안전관리 절차 준수 등을 평가하고 있다. 영상검사 적정성 평가에서는 인력, 장비와 관련된 구조 지표, 환자평가 실시율, 피폭 저감 프로그램 등이 포함되어 있었다. 하지만 좀 더 안전하고 질 높은 영상검사를 위해서는 의료기관의 인증평가 참여율을 높이는 방안 마련이 필요하며, 영상검사 적정성 평가의 인력지표 개선과 인센티브 지급에 대한 고려도 필요하다. 마지막으로 국가 차원의 방사선 노출 통합관리도 함께 병행되어야 할 것이다.
모바일 환경이 널리 확산되면서 최근 의료진단시스템은 기존 시스템의 지역적 한계를 넘어 시공간의 제약을 받지 않고 제공되고 있다. 또한 무선 인터넷 기술과 모바일 이동 통신 기술이 의료 기술과 융합하며 빠르게 보급되어 발전하고 있다. 의료 서비스 이용자는 다양한 종류의 무선 단말기를 이용하여 이동 중 무선망을 통해 의료 서비스를 제공 받을 수 있다. 본 논문에서는 병원 의료영상 진단 정보를 병원내의 시공간을 벗어나 전송, 검색 및 갱신할 수 있는 의료 진단 정보 시스템을 구현하고 평가하였다. DICOM CT영상과 JPEG 2000 CT압축영상의 비교를 통하여 임상적으로 적합한 영상인지를 t-test를 실시하여 통계적으로 평가한 결과 DICOM CT영상의 경우 평균 평가 값이 비교적 임상적 진단에 적합한 영상임을 확인하였다.
인공지능 기술 발전으로, 의료영상 분야에서도 딥러닝 기반 질병 진단 연구가 활발히 진행되고 있다. 딥러닝 모델 개발 시, 학습 데이터 품질은 모델의 성능과 신뢰성에 매우 큰 영향을 미친다. 그러나 의료 분야의 경우 도메인 지식에 대한 진입 장벽이 높아 개발자가 학습에 사용되는 의료영상 데이터의 품질을 평가하기 어렵다. 이로 인해, 많은 의료영상 분야에서는 각 분야의 특성(질병의 종류, 관찰 아나토미 등)에 따른 영상 품질 평가 방법을 제시해왔다. 그러나 기존의 방법은 특정 질병에 초점이 맞춰져, 일반화된 품질 평가 기준을 제시하고 있지 않다. 따라서 본 논문에서는 대부분의 흉부 질환을 진단하기 위한 흉부 X선 영상의 품질을 평가할 수 있는 기준을 제안한다. 우선, 흉부 X선 영상을 대상으로 관찰된 영역인 심장, 횡격막, 견갑골, 폐 등을 분할하여, 3D 히스토그램을 기반으로 각 영역별 통계적인 정밀 품질 평가 기준을 제안한다. 본 연구에서는 JSRT, Chest 14의 오픈 데이터셋을 활용하여 적용 실험을 수행하였으며, 민감도는 97.6%, 특이도는 92.8%의 우수한 성능을 확인하였다.
본 연구에서는 CD-RAD Phantom을 이용하여 의료영상의 명세성 (image clarity)분석을 위하여 동일한 X선 영상을 대상으로 물리적 평가와 시각적 평가를 비교분석 하였다. 측정방법은 CD-RAD Phantom을 X선 조사하여 CR 영상처리장치를 통해 영상을 획득하였으며, 영상분석은 CD-RAD analyser program을 통한 통계학적 방법으로 물리적 평가를 시행하고, 동일한 영상의 시각적 평가는 관찰자 20명을 대상으로 blind test를 시행하였다. 분석결과는 Contrast-detail curve의 물리적 평가 IQF값은 25, 시각적 평가 IQF값은 30으로 분석되어 물리적 평가가 시각적 평가에 비해 우수하게 나타났다. 의료영상의 특성은 영상 판독자에게 영상의 정보 전달능력이 매우 중요하므로 객관적인 물리적 분석법과 시각적 분석법이 병행되어야 한다고 판단된다.
본 연구에서는 원본 의료영상인 DICOM 파일을 TIFF, BITMAP, GIF, JPEG 이미지 파일로 변환한 후 Origin pro와 ICY 영상분석 프로그램을 이용하여 영상의 압축 및 변환과정에 따른 변환 손실율을 정량적으로 평가를 하고자 하였다. 평가 방법으로는 50% MTF, 구조적 유사지수, MSE, RMSE, 최대 신호대 잡음비 등을 실험을 통하여 평가하였으며, TIFF 이미지 파일의 경우 모든 실험군에서 DICOM 영상과 동일한 결과 값을 나타내어 DICOM 영상과 동일 하거나 가장 유사한 이미지 파일 형식이라고 판단하였다. 그리고 JPEG 이미지 파일의 화질의 손실 및 왜곡의 정도가 가장 심한 결과로 나타났다, 본 연구는 Origin pro나 ICY 의료영상 분석 프로그램과 같은 독창적인 평가 프로그램을 적용하여 이후의 디지털 의료영상 기초 연구분야에서 본 논문의 평가 방법이 의료 영상 처리 분야의 연구 자료로 활용될 것으로 기대되며, DICOM 파일을 지원하지 않는 디지털 의료영상 및 평가 프로그램을 이용한 기초 연구분야에서 DICOM 영상과 동일한 결과를 나타내는 TIFF 이미지 파일을 기준으로 제시하여, 이미지 파일을 이용한 디지털 의료영상처리 연구 분야에서 신뢰성을 확보하는데 도움이 될 것으로 추론된다.
본 논문에서는 의료 영상 생성을 위한 Med-StyleGAN2를 제안한다. 생성적 적대 신경망은 이미지 생성에는 효과적이지만, 의료 영상 생성에는 한계점을 가지고 있다. 따라서 본 연구에서는 의료 영상 생성에 특화된 StyleGAN 기반 학습 모델을 제안한다. 이는 다양한 의료 영상 어플리케이션에 활용할 수 있으며, 생성된 의료 영상에 대한 정량적, 정성적 평가를 수행함으로써 의료 영상 생성 분야의 발전 가능성에 대해 연구한다.
의료영상으로 생성된 데이터의 양은 전문적인 시각적 분석 한계를 점점 초과하여, 자동화된 의료영상 분석의 필요성이 증가되고 있는 실정이다. 이러한 이유 등으로 인하여 본 논문에서는 정상소견과 종양소견을 보이는 각각의 뇌 실질 MRI 의료영상을 이용하여 Inception V3 딥러닝 모델을 이용한 종양 유무에 따른 분류 및 정확도를 평가하였다. 연구 결과, 딥러닝 모델의 정확도 평가는 학습 데이터 세트의 경우 90%, 검증 데이터 세트의 경우 86%의 정확도를 나타내었다. 손실률 평가에서는 학습 데이터 세트의 경우 0.56, 검증 데이터 세트의 경우 1.28의 손실률을 나타내었다. 향 후 연구에서는 딥러닝 모델의 성능 향상 및 평가의 신뢰성 확보를 위하여 공개된 의료영상의 데이터를 충분히 확보하고, 라벨링 분류 작업을 통한 라벨링의 정확도를 개선하여 모델링을 구현해 볼 필요가 있다고 사료된다.
본 논문에서는 방사선투영영상을 기존 압축방법인 JPEG 압축과 새로운 표준으로 채택중인 JPEG2000을 적용하여 압축율 및 영상의 품질을 비교 실험하였다. 기존의 의료영상압축 표준의 하나인 JPEG 압축은 압축비율이 높아짐에 따라 블륵킹 현상의 발생으로 원 영상이 회손되는 압축의 한계를 인식하고 있다. 따라서 원 영상의 보호와 압축율 증가의 두 가지 면을 만족시키기 위해 Wavelet 을 사용하는 JPEG2000을 실험 평가하여 의료영상압축에 적용하고자 한다. 실험대상으로 환자 10명 정상인 10명의 투영영상을 사용하였으며, 영상의 품질, 손상도 등을 평가하기 위해 PSNR( Peak Signal to Noise Ratio )과 판독의에 의한 ROC( Receiver Operating Characteristic )분석을 실행하였다. 실험결과, 영상의 품질, 손상도를 평가하기 위한 PSNR 은 15:1 압축에서 $46.05{\pm}1.1dB$의 값을 얻었으며, JPEG의 같은 압축비율에 비해 $1.78{\pm}0.1dB$의 값이 높음을 알 수 있었다. 종합적으로 3명의 판독의에 의해 ROC 분석을 실행한 결과 15:1의 압축비율에서 압축비율과 품질을 종합하였을 때 진단에 적합한 최적 압축비율임을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.