• Title/Summary/Keyword: 의료영상처리

Search Result 456, Processing Time 0.043 seconds

A study of Image Restoration using User Defined Mean.Wiener Filters in u-Health Care (u-헬스 케어에서 사용자 정의 평균.위너필터를 이용한 영상복원에 관한 연구)

  • Lee, Hyun-Chang;Shin, Hyun-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2008
  • According to the development of software and hardware about multimedia technologies, images are used to store information extracted from data. Noises by various causes, however, are added in the process of forming images, recording and transmitting in ubiquitous environments. In image restoration viewpoints to remove them. appropriate filtering methodologies, wiener of mean etc, are utilized. Various ways for image restoration are studied as well. Therefore, in this paper, we Propose user defined image restoration that applies the most appropriate parameters for image restoration and show the implementation result of the system using various parameters including mean filter and wiener filter to advance quality of degraded source image affected by noise in ubiquitous environment and medical fields.

  • PDF

A Study on the Comparison of Learning Performance in Capsule Endoscopy by Generating of PSR-Weigted Image (폴립 가중치 영상 생성을 통한 캡슐내시경 영상의 학습 성능 비교 연구)

  • Lim, Changnam;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.251-256
    • /
    • 2019
  • A capsule endoscopy is a medical device that can capture an entire digestive organ from the esophagus to the anus at one time. It produces a vast amount of images consisted of about 8~12 hours in length and more than 50,000 frames on a single examination. However, since the analysis of endoscopic images is performed manually by a medical imaging specialist, the automation requirements of the analysis are increasing to assist diagnosis of the disease in the image. Among them, this study focused on automatic detection of polyp images. A polyp is a protruding lesion that can be found in the gastrointestinal tract. In this paper, we propose a weighted-image generation method to enhance the polyp image learning by multi-scale analysis. It is a way to extract the suspicious region of the polyp through the multi-scale analysis and combine it with the original image to generate a weighted image, that can enhance the polyp image learning. We experimented with SVM and RF which is one of the machine learning methods for 452 pieces of collected data. The F1-score of detecting the polyp with only original images was 89.3%, but when combined with the weighted images generated by the proposed method, the F1-score was improved to about 93.1%.

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

High efficient vision system for volumetric display (입체영상 디스플레이를 위한 고효율 비젼 시스템)

  • Kim, Sang Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5130-5133
    • /
    • 2013
  • Volumetric display has many applications recently in education, 3D movie, medical images but these applications have several problems that need to be overcome. Volumetric display may process a amount of visual data and design the high efficient vision system for realtime display. The stereo data for volumetric display estimated the disparity vectors from the stereoscopic sequences has been transmitted the disparity vectors, motion vectors and residual images with the reference images, and the stereoscopic sequences have been reconstructed at the receiver for 3D display. Central issue for efficient 3D display lies in selecting an appropriate stereo matching with robust vision system. In this paper, high efficient vision system is proposed for efficient stereo image matching and the experimental results represent high efficiency for proposed 3D display system.

Signal Processor Design of Scanning Type Thermal Imaging System using IRFPA (주사방식 초점면 배열 열상장비의 신호처리기 설계)

  • Hong, S.M.;Yoon, E.S.;Yu, W.K.;Park, Y.C.;Lee, J.H.;Song, I.S.;Yum, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2600-2602
    • /
    • 2004
  • 열상장비는 물체가 방출하는 적외선 영역의 미약한 에너지를 검출하여 눈에 보이는 영상으로 변환하는 장비이다. 주간과 동일한 영상을 야간에도 획득할 수 있기 때문에 야간 감시등 군사용 장비로 활용되지만 최근에는 송전선로의 이상 유무 판단, 저장 탱크의 저장량 확인, 사스 환자의 체열 검색 등 산업계와 의료계의 이용도 증가하고 있다. 본 논문에서는 최신 기술인 주사방식 초점면 배열 열상장비의 아날로그 및 디지털신호처리기 설계와 제작 기술을 다룬다. $480{\times}6$ 배열의 고밀도 검출 소자를 이용하여 고속, 저잡음 신호처리를 함으로써 안정된 열 영상을 실시간으로 획득하였다.

  • PDF

AWGN Removal Algorithm using Switching Fuzzy Function and Weight (스위칭 퍼지 함수와 가중치를 사용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.121-123
    • /
    • 2021
  • Image processing is being used in various forms in important fields of the 4th industrial revolution, such as artificial intelligence, smart factories, and the IoT industry. In particular, in systems that require data processing such as object tracking, medical images, and object recognition, noise removal is used as a preprocessing step, but the existing algorithm has a drawback in that blurring occurs in the filtering process. Therefore, in this paper, we propose a filter algorithm using switching fuzzy weights. The proposed algorithm switches the fuzzy function by dividing the low-frequency region and the high-frequency region by the standard deviation of the filtering mask, and obtains the final output according to the fuzzy weight. The proposed algorithm showed improved results compared to the existing method, and showed excellent characteristics in the region where the high-frequency component is strong.

  • PDF

Phantom of the AAPM CT imaging evaluation Studies on the quantitative analysis method (CT 정도관리 영상의 정량적 분석방법에 관한 연구)

  • Kim, Young-su;Ko, Seong-Jin;Kang, Se-Sik;Ye, Soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.271-274
    • /
    • 2016
  • CT quality assurance imaging evaluation and enforcement as quantitative assessment by phantom image evaluation, assessment items include There are also contrasting the water attenuation coefficient, uniformity, noise, resolution, spatial resolution, 10mm slice thickness evaluation, contrast resolution, space for the resolution, the slice thickness evaluation, it is possible to estimate the error due to the evaluation by the subjective judgment of the tester, using a subjective error image processing program to be computed to minimize the objective evaluation. Basic recording conditions of the CT image quality control assessment is the same as special medical equipment quality control checks, the images were evaluated quantitatively using IMAGE J. For a CT attenuation coefficient, the uniformity, noise evaluation, were evaluated as CT quality control image the standard deviation of the measured value of the digital processing of image smaller and less noise uniform images than the, contrast and resolution assessment is the size of the diameter of a circle having a large the 1 inch, 0.75 inch, 0.5 inch quality if the diameter of the circle, was evaluated in the small circle in the near circle ellipse. Spatial resolution is evaluated by using a self-extracting features of an image processing program, all of the groups of members comprising the acceptance criteria to automatically extract, was evaluated to be very useful for the quantitative assessment. When CT image quality control assessment on the basis of the results such as the above, if using an image processing program to minimize the subjective judgment of the error evaluator and is determined more efficient than would be made quantitative evaluation.

  • PDF

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

An Embedded FPGA Implementation for a Cameralink Interface (카메라링크 접속을 위한 임베디드 FPGA의 구현)

  • Lee, Chang-Su
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.122-128
    • /
    • 2011
  • Although conventional analog linescan cameras are used widely, high-speed, high-resolution Cameralink standard will lead the area of frame grabber industry such as factory automation. In this paper, we are developing embedded frame grabber testbed without PC which will give an another solution to image processing applications. Therefore, we designed hardware schematics and programmed FPGA device with VHDL in order to interface Cameralink standard linescan CCD camera. In the future, our embedded on-chip controller could be applied to various image processing systems such as medical imaging, especially optical coherence tomography, machine vision and industrial electronics.

A Study on an Image Processing for Segmentation of Liver Arteriography Using Medical Image(MDCT) (의료명상(MDCT)을 이용한 간 동맥의 영역 분할에 관한 영상처리)

  • Choi Seung-Kwon;Cho Yong-Hwan;Lee Byong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.305-305
    • /
    • 2005
  • In modern society, diseases are variously found. Also, disease can be fatal once starting attack or one misses the proper medical examination time. According to the development of society, our liver settled on exhausted status which causes high disease development ratio because of excess business, smoking and drinking. Especially liver related disease cannot be recovered, therefore it depends on internal organ transplant surgery. In this paper, calculate volume from rendered liver shape using 3-dimensional image processing method and we develop an image processing method for the image acquired by MDCT, that can simulate incision line decision according to blood vessel segmentation that can be used on liver transplant operation. Simulation results which adopt automatic liver segment abstraction algorithm show that it can help surgical operation.