• Title/Summary/Keyword: 응축

Search Result 1,256, Processing Time 0.028 seconds

A Fundamental Study on Development of a Rotating Horizontal Heat Pipe (회전식 수평 Heat Pipe의 개발에 관한 기초 연구)

  • 임광빈;이진성
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.325-332
    • /
    • 1999
  • When a rotating heat pipe is in operation, liquid condensate returns from the condenser to the evaporator along the inside surface by both components of gravitational and centrifugal forces. It was known that its performance was largely dependent on how to increase the flow rates of condensate and keep the condensate film thickness as thin as possible. Most of research works were focussed on this goal, and various inner wall structures such as tapered wall, stepped wall or coil inserted pipe etc. were developed. In the present study, a stepped wall structure with 3 internal grooves in the condenser and adiabatic zone was examined. For this system, the condensate would flow down to the evaporator through the grooves, resulting a reduced film thickness over the condenser surface. Experimental data showed an enhancement of heat transfer coefficient in the condenser zone. An analytical solution to the condensate film thickness showed that the analytically calculated values of heat transfer coefficient were considerably higher than the experimental data.

  • PDF

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

Dynamics and Flow Pattern in the Vertical single-tube Reflux Condenser (수직 단일 관에서의 재관수응축시 유동 패턴과 동적 특성분석)

  • 이재영
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.358-365
    • /
    • 2000
  • 본 연구에서는 수직 단일관에서의 재관수(reflux) 응축 현상에서 증기유량이 역류제한치보다 큰 경우에 발생하는 다양한 유동 패턴을 예측하고, 그 동적 특성을 해석하기 위한 모델을 개발하였다. 특히 L/D가 큰 재관수 응축기에서 발생하는 충전 방출 모드에서의 동적 특성을 예측하는 것이 목표이다. 응축기의 내부를 액체와 증기의 두 영역으로 나누어 질량, 에너지, 운동량 보존에 입각한 본 모델은, 형성된 물기둥의 진동시 갈래질 경계(bifurcation boundary)와 진동주기를 예측할 수 있다. 이 모델은 McMaster 대학에서 수행한 실험결과와 비교한 결과 양호한 예측을 했고, 튜브 직경변화 효과를 잘 묘사하였다. 이러한 단순 모델은 재관수 응축기의 설계시에 설계변수를 도출하는데 사용될 수 있고, 인위적으로 부여한 압력펄스를 이용하여 재관수 응축기의 운전영역을 개선하는데 기초로 활용될 수 있다.

  • PDF

A Study on the Effect of the Heat Transfer Surface Position to the Condensation heat Transfer (전열면 자세가 응축 열전달에 미치는 영향에 관한 연구)

  • 조시기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • A study has been conducted to investigate the effect of the heat transfer surface position in the range of dropwise condensation, filmwise condensation, and glacial condensation. For dropwise condensation promoter, the heat transfer surface was evaporated by gold. As a result, heat transfer rate is almost same where the position of heat transfer surface is between 45 and 135 degree. It is found that heat transfer rate was reduced as subcooled degree was increased. And it is also found that if the subcooled degree becomes lower, the position of heat transfer surface is more effective. Adversely, if the subcooled degree becomes higher, the effectiveness of surface position is getting relatively lower. Regardless of the position, the transition temperatures from dropwise condensation to filmwise condensation is in the vicinity of 80K.

  • PDF

증기 제트 응축현상에서의 응축하중에 대한 실험적 연구

  • Park, Chun-Kyung;Cho, Seok;Song, Cheol-Hwa;Yang, Seon-Kyu;Cheon, Se-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.541-546
    • /
    • 1998
  • 증기 제트 응축에서 발생하는 응축하중을 실험적으로 고찰하였다. 네 가지 서로 다른 직경의 노즐 (5, 10, 15, 20mm) 과 증기분사기를 응축실험에 사용하였으며, 증기 질량유속과 물온도를 변화하면서 동압을 측정하였다. 실험결과에 의하면 압력파의 진폭은 노즐 직경이 작을수록 작았다. 한편 압력파의 진폭은 일반적으로 물온도가 증가할수록 증가하나 물온도가 어느 한도 이상으로 증가하면 오히려 감소하는 경향을 보였다. 그러나 물온도가 아주 높고 증기 질량유속이 큰 경우에는 불안정한 압력파가 발생할 가능성이 관찰되었다.

  • PDF

Characteristics of Heat Transfer in a Heat pipe Controlled by Solenoid Valve (전자 밸브에 의해서 제어되는 히트파이프의 전열 특성)

  • Jun, C.H.;Jang, Y.S.;Kim, O.G.
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.103-111
    • /
    • 1997
  • The purpose of this research is the study of characteristics of heat transfer in a heat pipe controlled by solenoid valve. A solenoid valve located to the adiabatic section between evaporator and condenser of heat pipe was used to control the valve action for effective energy transfer of the industrial exchanger machine. By the results presented in this study temperature difference between evaporator and condenser increases with increasing the temperature frequency and with decreasing the temperature amplitude. When inclination angle and flow rate of cooling water increases, the temperature amplitude is reached to the steady state rapidly with increasing the temperature frequncy.

  • PDF

Review of Steam Jet Condensation in a Water Pool (수조내 증기제트 응축현상 제고찰)

  • 김연식;송철화;박춘경
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.74-83
    • /
    • 2003
  • In the advanced nuclear power plants including APR1400, the SDVS (Safety Depressurization and Vent System) is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW (Total Loss of Feedwater), the POSRV (Power Operated Safety Relief Value) located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow.

Condensation Heat Transfer Characteristics of Hydrocarbon Refrigerants in Horizontal Tubes of 7.73 mm and 5.80 mm (7.73 mm와 5.80 mm 수평관내 탄화수소 냉매의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2008
  • 본 논문은 내경 7.73 mm와 5.80mm의 수평관내 프레온계 냉매 R-22와 탄화수소계 냉매 R-290과 600a의 응축 열전달 계수의 실험적 결과를 나타내었다. 실험장치는 압축기, 응축기, 팽창밸브, 증발기 등으로 구성된다. 응축 실험은 질량유속 $35.5{\sim}210.4\;kg/m^2s$이고, 응축온도 40$^{\circ}C$인 조건에서 수행하였다. 주요 결과를 요약하면 다음과 같다. 탄화수소계 냉매 R-290과 R-600a의 평균 열전달 계수는 프레온계 냉매 R-22보다 높게 나타났으며, R-600a의 평균 열전달 계수가 모든 관경에 대해 가장 높게 나타났다. 실험결과와 종래의 상관식을 비교한 결과, 모든 관경과 냉매에 대해 Haraguchi 등의 상관식이 가장 좋은 일치를 보였다. 그 중에서 Cavallini-Zecchin의 상관식은 7.73 mm 관경의 실험데이터와, Dobson 등의 상관식은 내경 5.80 mm 관경의 데이터와 좋은 일치를 보였다.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

Assessment and Improvement of the Horizontal In-Tube Condensation Heat Transfer Model in the MARS code (MARS 코드의 수평관내부 응축열전달 모델 평가 및 개선)

  • Lee, Hyun Jin;Ahn, Tae Hwan;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-68
    • /
    • 2016
  • Extensive researches have been carried out for enhancing the safety of nuclear power plants and, especially, the development of passive cooling systems, such as passive containment cooling system (PCCS) and passive residual heat removal system, is increasingly important, where condensation is a crucial heat transfer mechanism. Recently, Ahn & Yun et al. developed a horizontal in-tube condensation heat transfer model as one of the activities for the PCCS development. In this work, we implemented the Ahn & Yun 's condensation heat transfer model into the MARS code and assessed it using the PASCAL experimental data. Based on the results of the assessment, we identified the limitations of the Ahn & Yun 's model and suggested a modified Ahn & Yun 's model, and assessed the model using various experimental data.