• Title/Summary/Keyword: 응축반응

Search Result 116, Processing Time 0.023 seconds

Degradation of Polymer Electrolyte Membrane under OCV/Low Humidity Conditions (OCV / 저가습 조건에서 고분자전해질 막 열화)

  • Kim, Taehee;Lee, Junghun;Lee, Ho;Lim, Tae Won;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.345-350
    • /
    • 2007
  • During PEMFC operation, OCV(open circuit voltage) and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. There have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) and $H_2O_2$ concentration in condensed water were measured during cell operation under OCV and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the OCV condition accelerate the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

Explosive Accidents and Safe Handling of an Experimental Liquid Rocket Engine Using Nitrous Oxide as Oxidizer (아산화질소를 산화제로 사용하는 실험용 액체로켓의 폭발사례 및 안전사용방안)

  • Choi, Songyi;Park, Sukyoung;Lee, Donggun;Kim, Dohun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • Nitrous oxide is known as green and safe propellant, and can be supplied by its own vapor pressure. So, many liquid propulsion research institutes and university laboratories use nitrous oxide as oxidizer of experimental liquid rocket engine. However, the unknown explosions occurred twice during hot fire experiments using subscale ethanol/nitrous oxide thruster. In this paper, we surmised that the explosions were caused by the decomposition of nitrous oxide in the injector body and the recondensation of nitrous oxide. Improvement and the safe handling methods are suggested.

Thermodynamic Equilibrium Analysis of Copper Chemical Vapor Deposition from Cu(II) Hexafluoroacetylacetonate Precursor (Cu(II) Hexafluoroacetylacetonate 프리커서에 의한 구리 화학증착의 열역학적 평형조성 해석)

  • Jeon, Chi-Hun;Kim, Yun-Tae;Baek, Jong-Tae;Yu, Hyeong-Jun;Park, Dong-Won;Choe, Byeong-Jin;Kim, Dae-Ryong
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.657-666
    • /
    • 1995
  • Chemical vapor deposition of copper from the Cu(hfac)$_2$, Cu(II) hexafluoroacetylacetonate precursor, has been thermodynamically investigated by the minimization of Gibbs free energy of the system. For the Cu(hfac)$_2$-Ar system, carbon incorporation into the deposited films was observed in all the process conditions, which is presumably inherent from the thermal decomposition of the Cu(hfac)$_2$, precursor. For the Cu(hfac)$_2$-H$_2$system, lower temperatures were required than those of the Cu(hfac)$_2$-Ar system for the depositon of the copper films. Furthermore, we identified that the appearances of the condensed phases were sequentially changed from the codeposits of C(s)+CuF(s) to C(s)+CuF(s)+Cu(s), C(s)+Cu(s), Cu(s), and C(s), when the H$_2$input ratio and th reaction temperature were increased.

  • PDF

Cytopathic Effects of Japanese Encephalitis Virus Structural Proteins in BHK-21 Cells (BHK-21 세포에서의 일본뇌염바이러스 구조단백질에 의한 세포독성)

  • 성기민;정용석
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • Inducible expression system for the three structural proteins, capsid (C), precursor membrane (prM/M), and envelop (E) of Japanese encephalitis virus (JEV) was established in BHK-21 cells. Doxycycline, a tetracycline analog, was utilized as an inducer. Transfectants BHK-21/IV (vector only), BHK-21/IC (for C), BHK-21/IP3 (for prM), and BHK-21/IE1 (for E) were selected and cloned in the presence of G4l8 or hygromycin. Transcribed mRNAs for the corresponding genes were observed after doxycycline induction. Effects by the JEV structural gene expression on the transfectants were monitored via cell growth, chromatin condensation, internucleosomal DNA fragmentation, and DNA contents analyses. Clear cell growth retardation and chromatin condensation were observed in all three transfectants while only BHK-2/IC corresponded to the induction status in the DNA fragmentation and DNA content analyses. Combined results, therefore, suggested that JEV capsid protein should be one of the direct and independent factors in apoptotic cell death induced by IEV infection.

Modification of NiO Using 2PACz for P-i-n Perovskite Solar Cells (P-i-n 페로브스카이트 태양전지 응용을 위한 2PACz을 이용한 NiO의 개질)

  • Seon-Min Lee;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.100-106
    • /
    • 2024
  • To improve charge transfer and surface contact between NiO and perovskite, sol-gel derived NiO is modified with [2-(9H-car-bazol-9-yl)ethyl] phosphonic acid (2PACz) in p-i-n structured perovskite solar cells (PeSCs). The phosphonic acid head group in the 2PACz can bind to the hydroxyl groups on the surface of NiO by a condensation reaction, which results in a better-matched energy level with the valence band of perovskite layers, reducing nonradiative recombination and energy loss. Furthermore, the formation of pin-hole free perovskite films is observed in the 2PACz modified NiO system. Consequently, the combination of sol-gel processed NiO with optimal 2PACz exhibits a higher efficiency of 17.08% and superior stability under ambient air conditions without any encapsulation, compared to a bare NiO based device showing 13.69%.

Iron chelating agent, deferoxamine, induced apoptosis in Saos-2 osteosarcoma cancer cells (Saos-2 골육종 세포에서 iron chelating agent, deferoxamine에 의한 apoptosis 유도)

  • Park, Eun Hye;Lee, Hyo Jung;Lee, Soo Yeon;Kim, Sun Young;Yi, Ho Keun;Lee, Dae Yeol;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2009
  • Purpose:Iron is a critical nutritional element that is essential for a variety of important biological processes, including cell growth and differentiation, electron transfer reactions, and oxygen transport, activation, and detoxification. Iron is also required for neoplastic cell growth due to its catalytic effects on the formation of hydroxyl radicals, suppression of host defense cell activities, and promotion of cancer cell multiplication. Chronic transfusion-dependent patients receiving chemotherapy may have iron overload, which requires iron-chelating therapy. We performed this study to demonstrate whether the iron chelating agent deferoxamine induces apoptosis in Saos-2 osteosarcoma cells, and to investigate the underlying apoptotic mechanism. Methods:To analyze the apoptotic effects of an iron chelator, cultured Saos-2 cells were treated with deferoxamine. We analyzed cell survival by trypan blue and crystal violet analysis, apoptosis by nuclear condensation, DNA fragmentation, and cell cycle analysis, and the expression of apoptotic related proteins by Western immunoblot analysis. Results:Deferoxamine inhibited the growth of Saos-2 cell in a time- and dose-dependent manner. The major mechanism for growth inhibition with the deferoxamine treatment was by the induction of apoptosis, which was supported by nuclear staining, DNA fragmentation analysis, and flow cytometric analysis. Furthermore, bcl-2 expression decreased, while bax, caspase-3, caspase-9, and PARP expression increased in Saos-2 cells treated with deferoxamine. Conclusion:These results demonstrated that the iron chelating agent deferoxamine induced growth inhibition and mitochondrial-dependent apoptosis in osteosarcoma Saos-2 cells, suggesting that iron chelating agents used in controlling neoplastic cell fate can be potentially developed as an adjuvant agent enhancing the anti-tumor effect for the treatment of osteosarcoma.

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

Synthesis and Characterization of Si-C-N Precursor by Using Chemical Vapor Condensation Method (화학기상응축법을 이용한 Si-C-N Precursor 분말의 합성 및 특성평가)

  • Kim, Hyoung-In;Kim, Dae-Jung;Hong, Jin-Seok;So, Myoung-Gi
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.783-788
    • /
    • 2002
  • In this study, nano-sized Si-C-N precursor powders were synthesized by Chemical Vapor Condensation Method(CVC) using TMS(Tetramethylsilane: Si($CH_3)_4$), $NH_3$ and $H_2$ gases under the various reaction conditions of the reaction temperature, TMS/$NH_3$ ratio and TMS/$H_2$ ratio. XRD and FESEM were used to analysis the crystalline phase and the average particle size of the synthesized powders. It was found that the obtained powders under the considering conditions were all spherical amorphous powder with the particle size of 87∼130 nm. The particle size was decreased as the reaction temperature increased and TMS/$NH_3$ and TMS/$H_2$ ratio decreased. As the results of EA analysis, it was found that the synthesized powders had been formed the powders composed of Si, N, C and H. Through FT-IR results, it was found that the synthesized powders were Si-C-N precursor powders with Si-C, Si-N and C-N bonds.

Survival, Hematologic and Histological Changes of File Fish Thamnaconus modestus Adult Exposed to Different Lower Temperature (저수온에 노출된 말쥐치 Thamnaconus modestus의 생존율, 혈액학적 및 조직학적 반응)

  • Kim, Hae Jin;Lee, Hee-Jung;Kim, Won Jin;Shin, Yun Kyung
    • Korean Journal of Ichthyology
    • /
    • v.31 no.4
    • /
    • pp.201-207
    • /
    • 2019
  • Temperature is one of the most important criteria considered in species preference for aquaculture. Acute drop in temperature during winter is a cause of disease and mass mortality in farmed fish. This study was carried out the low water temperature tolerance, oxygen consumption, hematologic and histological responses to use as basic data for the management of fish farming which frequently cause death due to winter water temperature drop. Low-lethal water temperature for 4 days of file fish Thamnaconus modestus (4day-LT50) was 6.97℃ (6.69~7.27℃). Oxygen consumption rate decreased with decreasing water temperature, showing a significant difference between water temperatures. SOD activity increased significantly at 6℃ experimental group than control group (10℃) (p<0.05), but CAT did not show any significant difference between experimental temperatures (p>0.05). Cortisol increased with decreasing experimental water temperature compared to control group. Histological changes in the liver include decreased blood vessels in the blood vessels, proliferation of acid cells, condensation of the nucleus, atrophy of pancreatic exocrine gland cells, and enzyme source granules.

Capsaicin induced apoptosis and the enhanced anticancer effect of anticancer drugs in cancer cells (종양세포에서의 capsaicin에 의한 apoptosis 유도와 항암제의 항암효과의 증가)

  • Kim, Sun Young;Lee, You Jin;Park, Eun Hye;Yi, Ho Keun;Jo, Dae Sun;Kim, Jung Soo;Hwang, Pyoung Han
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.3
    • /
    • pp.307-314
    • /
    • 2008
  • Purpose : Capsaicin, the major pungent ingredient in red pepper, has long been used in spices and food additives. It has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. The aim of this study was to investigate the apoptosis-inducing effect of capsaicin on gastric cancer cells, and to provide valuable information concerning the application of capsaicin for therapeutic purposes. Methods : Cultured SNU-668 cells were treated with capsaicin. We analyzed cell survival by trypan blue and crystal violet analysis, cell cytotoxicity by MTT assay, apoptosis by nuclear condensation and DNA fragmentation, bcl-2 and bax mRNA expression by RT-PCR, and the expression of apoptosis related proteins by Western immunoblot analysis. In order to assess whether the growth inhibitory effect of anticancer drugs is enhanced by capsaicin, we investigated the effects of cell cytotoxicity and the expression of apoptosis related proteins of etoposide and adriamycin treated with capsaicin in cells. Results : Capsaicin inhibited growth of SNU-668 cells in a dose-dependent manner. This inhibitory effect of capsaicin on cell growth was mainly due to the induction of apoptosis as evidenced by DNA fragmentation, nuclear condensation and the expression of apoptosis related proteins. Furthermore, capsaicin prominently reduced the ratio of anti-apoptotic Bcl-2 to pro-apoptotic Bax and consequently increased caspase-3 activity. The cells treated with capsaicin were more sensitive to death induced by etoposide and adriamycin than the cells without capsaicin. Conclusion : These results demonstrate that capsaicin efficiently induced apoptosis in SNU-668 cells through a caspase-3-dependent mechanism and sensitizes cancer cells to anticancer drugs toward apoptotic cell death, which may contribute to its anticancer effect and chemosensitizer function against gastric cancer.