• Title/Summary/Keyword: 응력-변형율 특성

Search Result 169, Processing Time 0.03 seconds

Stress-Strain Properties of Surlightweight Polymer Concrete (초경량(超輕量) 폴리머 콘크리트의 응력(應力)-변형특성(變形特性))

  • Sung, Chan Yong;Kim, Kyung Tae;Min, Jeong Ki;Kim, Young Ik;Youn, Joon No;Jung, Hyun Jung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.271-277
    • /
    • 1998
  • This study was performed to evaluate the stress-strain properties of surlightweight polymer concrete using synthetic lightweight aggregates. The following conclusions were drawn; 1. The dynamic modulus of elasticity was in the range of $1.514{\times}10^5{\sim}1.916{\times}10^5kgf/cm^2$, which was approximately 48~96% of that of the normal cement concrete. It was showed larger with the decrease of synthetic lightweight fine aggregate. 2. The static modulus of elasticity was in the range of $2.552{\times}10^4{\sim}4.386{\times}10^4kgf/cm^2$, which was showed lower compared to that of the normal cement concrete. The poisson's number of surlightweight polymer concrete was less than that of the normal cement concrete. 3. The stress-strain curves of surlightweight polymer concrete were showed smaller with the increase of expanded clay.

  • PDF

Strength Characteristics of Anlsotropic Overconsalidated Clay (이방성과압밀점토의 강도특성)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.35-42
    • /
    • 1988
  • A series of consolidated-undrained cubical triaxial tests was performed to investigate the three- dimensional strength characteristics of anisotropic overconsolidated clay. All specimens sampled in field were loaded under conditions of principal stress directions fixed and aligned with the directions during sampling. A sufficient number of tests It was performed to deter.mine the three- dimensional failure surface in the octahedral plane. The adjusted effective friction angles obtained by the stress state projected on the same octahedral plane did not show anisotropy, while the measured effective friction angles showed considerally difference according to the axes of speccimens. Therefore, Lade failure criterion proposed fort isotropic materials could be also used practically for anisotropic overconsolidated clay. The direction of the plastic strain increment wrectors superimposed on the principal stress space was nearly perpendicular to the traces of the failure surface in the octahedral plane.

  • PDF

Elastic Wave Characteristics in Cemented Engineered Soils (고결된 Engineered Soils의 탄성파 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.

A Study on Hot Deformation Behavior of Bearing Steels (베어링강의 고온변형 특성에 관한 연구)

  • Moon, Ho-Keun;Lee, Jae-Seong;Yoo, Sun-Joon;Joun, Man-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.614-622
    • /
    • 2003
  • In this paper, the stress-strain curves of bearing steels at hot working conditions are obtained by hot compression test with a computer controlled servo-hydraulic Gleeble 3800 testing machine and elongations and reductions of area of the bearing steels are also obtained by hot tensile test with a Gleeble 1500 testing machine. Experiments are conducted under the various strain-rates and temperatures and their results are used to obtain the flow stress information. A rigid thermo-viscoplastic finite element method is applied to the multi-stage hot forging process in order to predict temperature distribution of workpiece. The experimental results and the analysis results are used to obtain an optimal hot forging condition.

Effect of Various Interlayer Deposition on Room Temperature and High Temperature Properties of CrAlN Coatings (다양한 중간층 증착이 CrAlN 코팅의 상온 및 고온 특성에 미치는 효과에 관한 연구)

  • Kim, Hoe-Geun;Ra, Jeong-Hyeon;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.143-143
    • /
    • 2017
  • CrAlN 코팅은 높은 경도, 낮은 표면 조도 등의 상온에서의 우수한 기계적 특성 이외에 고온에서 안정한 합금상의 형성으로 인하여 우수한 내산화성 및 내열성을 보유하여 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구사용 환경의 가혹화로 인하여 코팅의 내마모성 및 내열성 등의 물성 향상을 통한 공구의 수명 향상이 필요시 되고 있으며, 다양한 코팅 물질을 활용하여 다층 코팅을 합성함으로써 난삭재용 공구 코팅의 물성을 높이는 연구들이 진행되고 있다. 본 연구에서는 CrAlN 코팅과 WC-Co 6wt.% 모재 사이에 CrZrN, CrN, CrN/CrZrSiN 등의 중간층을 합성하여 CrAlN 코팅의 상온 및 고온 특성을 향상시키는 연구가 진행되었다. 합성된 코팅의 구조 및 물성을 분석하기 위해 field emission scanning electron microscopy(FE-SEM), nano-indentation, atomic force microscopy(AFM) 및 ball-on-disk wear tester를 사용하였다. 코팅의 고온 특성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였고, $500^{\circ}C$ annealing 코팅의 표면 조도 분석 및 $500^{\circ}C$에서 마찰마모시험을 실시하였다. CrAlN 코팅의 상온 특성을 분석한 결과, 모든 코팅의 경도(35.5-36.2 GPa)와 탄성계수(424.3-429.2 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 마찰계수는 0.33로 CrZrN 중간층을 증착한 CrAlN 코팅의 마찰계수(0.41)에 비해 향상된 값 보였으며, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아 코팅의 내마모성이 향상된 것으로 판단된다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio는 각각 0.076, 0.083 으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 내열성 시험 결과, CrN/CrZrSiN 중간층을 증착한 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었다. $500^{\circ}C$ annealing 후 진행된 표면 조도와 마모시험 결과, 모든 코팅의 조도 값 및 마찰계수는 상온 값에 비해 증가하였으며 CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅의 변화량이 가장 낮은 값을 보였다. 이는 CrZrSiN 중간층 내에 존재하는 $SiN_x$ 비정질상이 고온 annealing시에 산소 차폐막 역할을 하여, 코팅내의 잔류 산소에 의한 산화작용을 효과적으로 방지함으로써 코팅의 고온 특성이 향상된 것으로 판단된다.

  • PDF

Analysis of Composite Response Based on Microstructure Details (복합재료의 미시특성에 따른 기계적 특성해석)

  • 김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.784-790
    • /
    • 2003
  • Present investigation shows the analysis results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting deformation, the projected damage type, and stress-strain behavior were computed depending on microstructure details such as the type of periodic reinforcement array, and the type of interface bonding. A two-dimensional finite element analysis was conducted based on the unit-cell of square, hexagonal, or diagonal periodic away For composite with strong interface bonding, the transverse stress vs. strain curve was generally increased with the increase of the ceramic volume fraction. For the composite with weakly bonded interface, however, the transverse stress vs. strain curve was reduced against the ceramic volume fraction. The decrease was caused by the interface debonding-induced stiffness reduction of the composite. For the composite of weakly bonded interface, the relative reduction rate in the final limit stress for hexagonal array was larger than that for square array. Outcome of the present study was compared favorably with the published literature data.

Deformation Characteristics of Clayey Soil Subject to Repeated Compressive Loading (반복재하(反復載荷)에 의한 점성토(粘性土)의 변형특성(變形特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.89-95
    • /
    • 1989
  • In this study, it is attempted to examine (1) the residual deformation and elastic deformation induced from the repeated loads (up to the maximum of 100,000 times) on fully compacted soil specimen, the relation between stress and strain by performing the unconfined compressive test, after repeated loads and (2) the effect of water content, dry density, number of cycle, repeated loads, etc. on the effect of the stress-strain relation. The rate of deformation caused by repeated loads greatly depends on to the condition whether the water content is above or below the plastic limit. It is possible to estimate the initial tangent modulus of soil by means of modulus of elastic deformation obtained by putting repeated loads on the clay soil.

  • PDF

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

Effect of Aspect Ratio on Direct Tensile Response of Strain Hardening Cement Composites with PET and PVA Fiber (PET 및 PVA섬유를 사용한 변형경화형 시멘트 복합체의 직접인장거동에서 섬유 형상비의 영향)

  • Jeon, Esther;Yun, Hyun-Do;Park, Wan-Shin;Kim, Yong-Chul;Kim, Yun-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.913-916
    • /
    • 2008
  • Direct tensile response of strain hardening cement composites(SHCC) depends primarily on the material's tensile response, which is a water cement ratio, direct function of fiber and matrix characteristics, the bond between them, and the fiber volume fraction. This paper discusses effect of aspect ratio of the direct tensile response of SHCC with PET and PVA fibers. The main variables considered include the aspect ratio of PET fibers(Aspect ratio, ${\ell}/d_f$ : 150, 300, 600). For the same mixture proportion, PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600(Aspect ratio 300, 600) showed better overall behavior(Pseudo strain-hardening, Multiple cracking) than specimens with PET1.5+PVA0.5-150(Aspect ratio 150). Tensile strain of PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600 at ultimate tensile stress were 0.5, 2.0% respectively.

  • PDF