• Title/Summary/Keyword: 응력 집 중 인자

Search Result 17, Processing Time 0.017 seconds

Fatigue Life Estimation Method Considering Traffic Properties for Steel Highway Girder Bridge (교통특성을 고려한 강도로교의 피로수명 평가 방안)

  • Lee, Hee-Hyun;Kyung, Kab-Soo;Jeon, Jun-Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.209-218
    • /
    • 2010
  • The fatigue phenomenon, which is induced by stress accumulation due to the repeated loading of vehicles in the long term, is one of the main factors of the span of life of a steel bridge. In this paper, the effects of traffic properties on the fatigue life of ordinary short- and medium-span steel plate girder bridges that are exposed to relatively large dynamic effects are investigated. From the analysis, it was known that the fatigue life of the bridge becomes shorter with increasing traffic volume and number of large vehicles, and is affected by the weights of the vehicles. Based on the analysis results, a new parameter that can represent the traffic property that affects the fatigue life of the subject bridge is suggested, and the validity of the parameter is confirmed.

A study on Properties of Strength and Deformation of Composite beams varying Ratio of Tensile bar to Steel (철골철근비에 따른 혼합구조보의 내력 및 변형 특성에 관한 연구)

  • Lim, Byung Ho;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.87-94
    • /
    • 2002
  • In the preceding study, a series of results was presented according to factors like as attaching method of main bar, shear span to depth ratio, reinforcing method for different types of region among various factors, which could determine the properties of composite beams. Based on these results, this study was planned to investigate the structural behaviors of according to attaching method of main bar for composite beams(end-reinforced concrete(RC), center-steel concrete (SC)) varying ratio of tensile bar to steel mainly. Consequently, there were little difference according to attaching method of main bar. And as the ratio of tensile bar to steel increase, the efficiency of strength was high, but ductile capacity of beams could deteriorate. Therefore, to maximize the structural properties of composite beams, it was considered that the ratio of tensile bar to steel should be limited.

DEA optimization for operating tunnel back analysis (운영 중 터널 역해석을 위한 차분진화 알고리즘 최적화)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il;Su, Guo-Shao
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • Estimation of the stability of an operating tunnel through a back analysis is a difficult concept to analyze. Specially, when a relatively thick lining is constructed as in case of a subsea tunnel, there will be a limit to the use of displacement-based tunnel back analysis because the corresponding displacement is too small. In this study, DEA is adopted for tunnel back analysis and the feasibility of DEA for back analysis is evaluated. It is implemented in the finite difference code FLAC3D using its built-in FISH language. In addition, the stability of a tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

A Study for Adfreeze Bond Strength Developed between Weathered Granite Soils and Aluminum Plate (동결된 화강풍화토와 알루미늄판 접촉면에서 발현되는 동착강도 측정 연구)

  • Lee, Joonyong;Kim, Youngseok;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.23-30
    • /
    • 2013
  • Bearing capacity of pile is governed by only skin friction in frozen ground condition, while it is generally governed both by skin friction and end bearing capacity in typically unfrozen ground condition. Skin friction force, which arises from the interaction between pile and frozen soils, is defined as adfreeze bond strength, and adfreeze bond strength is one of the most important key parameters for design of pile in frozen soils. Many studies have been carried out in order to analyze adfreeze bond strength characteristics over the last fifty years. However, many studies for adfreeze bond strength have been conducted with limited circumstances, since adfreeze bond strength is sensitively affected by various influence factors such as intrinsic material properties, pile surface roughness, and externally imposed testing conditions. In this study, direct shear test is carried out inside of large-scaled freezing chamber in order to analyze the adfreeze bond strength characteristics with varying freezing temperature and normal stress. Also, the relationship between adfreeze bond strength and shear strength of the frozen soil obtained from previous study was analyzed. The coefficient of adfreeze bond strength was evaluated in order to predict adfreeze bond strength based on shear strength, and coefficients suggested from this and previous studies were compared.