• Title/Summary/Keyword: 응력 집중계수

Search Result 190, Processing Time 0.028 seconds

Conceptual Design of a Riser for 10 MW OTEC (10MW급 해양온도차발전을 위한 라이저 개념설계)

  • Jung, Dongho;Kwon, Yongju;Kim, Hyeonju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The concept design of a riser for Ocean Thermal Energy Conversion in 10 MW is proposed and its dynamic behaviour characteristics is analyzed with numerical method. A riser pipe with a hollow along its thickness in the cross-section to increase the effective modulus of its cross-section is designed considering the manufacture. The riser pipe without hollows along its thickness needs a lumped weight at the bottom end of a riser in order to keep its vertical hanging configuration from large buoyancy and the strong current. The riser is designed to control its density by inserting materials in high or low density into a hollow. The dynamic behaviour characteristics of the two designed risers is evaluated with the developed numerical analysis tool. The combined stress of the riser with a lumped weight is showed to be dominated by weight of a lumped mass. The riser with no hollow shows large combined stress near sea surface by strong current. Local structural analysis for the cross-section of a hollow riser is needed in detail.

A Fundamental Study on the Fracture Mechanism of Steel Plates under Completely Alternating Load (완전교번하중하(完全交番荷重下)에서의 강판(鋼板)의 파괴기구(破壞機構)에 관한 기차적(基磋的) 연구(研究))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.1-13
    • /
    • 1982
  • Transition process of plastic region. displacements, stresses and strains ahead the flaw tips were analysed by the finite element method on the steel plate with the circular hole and the one with the elliptical hole under completely alternating load (repetition of tensile loading, unloading and compressive loading). As the results, the followings were obtained. Transition process of elastic failure (yielding) region was estimated. From this the tendency was confirmed that the fracture would be initiated from ahead the flaw tip, and propagated along the $45^{\circ}$ direction. The fundamental data available in estimating the stress intensity factor that was considered as the core in analysing the fracture mechanism of steel plates were obtained. It was indicated that when unloading after tension the effect of compressive loading, and even the compressive reyield, was occured ahead the flaw tip. Similarly it was indicated that when unloading after compression the effect of tensile loading, and even the tensile reyield, was occured ahead the flaw tip. It was considered that these phenomena were occured because the unloading effect was constrained by the residual strains when unloading. It was considered that the fatigue phenomenon was occured ahead, the flaw tip by repetition of tensile yield, the above compressive reyield, compressive yeild and the above tensile reyield. In addition, the tendency was confirmed that the fracture ahead the flaw tip was occured as the flaw was changed from the circular hole to the elliptical hole and became to be the crack lastly.

  • PDF

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

Friction and Wear Behavior of Ultra-Thin TiN Film during Sliding Wear against Alumina and Hardened Steel (마모 상대재 변화에 따른 TiN 극박막의 마찰 및 마모거동)

  • Song, Myeong-Hun;Lee, Jae-Gap;Kim, Yong-Seok
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Ultra thin TiN films (50∼700nm thickness) were deposited on AISI 304 stainless steel substrates using a reactive DC magnetron sputtering deposition process to investigate their wear and friction properties. Dry sliding wear tests of the films were carried out against hardened steel and alumina counterparts using a pin-on-disk type wear tester at room temperature. Variation of friction coefficient was measured as a function of film thickness, load, sliding speed and roughness of the substrate. Worn surfaces of the film were examined by a scanning electron microscope. Wear resistance of the TiN film increased with the increase of the film thickness. The TiN film showed relatively high wear resistance in spite of its ultra thin thickness when it is mated by the steel counterpart, while it showed poor wear resistance with the alumina counterpart. The good wear resistance with the steel counterpart was explained by the formation of oxide layers on the film surface and sound interface character between the ultra thin film and the substrate.

  • PDF

Strength Characteristics of Cemented Sand of Nak-dong River (낙동강유역 시멘트혼합토의 강도특성)

  • Kim, Youngsu;Jeong, Wooseob;Seok, Taeryong;Im, Ansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.43-52
    • /
    • 2006
  • There were huge damages of human beings and their properties in many areas of the basin of the Nak-Dong river by the unusual weather and the localized downpour recently. In this research against disasters, we want to know strength of the cemented sand that is mixed with cement and poor-graded sand, to estimate CSG(Cemented Sand and Gravel) method used coffer dam in Japan, which is the materials of riverbed in the basin of the Nak-Dong river for levee's construction. For that, we want to provide the fundamental data which need in the examination of adaptation of levee's material, design and analysis by investigating compressive strength by curing period and cement content, elastic modulus and stress by transformation from compaction test, CBR test, unconfined compression test and triaxial compression test as changing cement content from 2% to 8% at two sites in the basin of the Nak-Dong river.

  • PDF

A Study on the Development of Photoelastic Experimental Hybrid Method for Color Isochromatics (칼라 등색선무늬용 광탄성실험 하이브릿법 개발에 관한연구)

  • Kwon, O-Sung;Hawong, Jai-Sug;Nam, Jeong-Hwan;Han, Song-Ling;Kwon, Gun;Liu, Yi
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.66-71
    • /
    • 2007
  • Isochromatics obtained from photoelastic experiment shows the stress distributions of full field of a structure under a load. Therefore stress distributions of the structure can be read at a glace through isochromatics. Many experimental data are obtained from isochromatics. And then, the various photoelastic experimental hybrid methods have been developed. Until now, monochromatic light has been used for photoelastic experimental hybrid method. Therefore the photoelastic experimental hybrid method used until now is called the photoelastic experimental hybrid method for black and white isochromatics. When stresses are analyed by photoelastic experimental hybrid method, many experimental data are needed. Therefore some fringe orders of isochromatics are needed for the photoelastic experimental hybrid method for white and black isochromatics. Therefore in this paper, the photoelastic experimental hybrid method for color isochromatics is developed. In this case, two fringe orders are enough for the experimental data of photoelastic experimental hybrid method for color isochromatics. Applying the method to stress concentration problems, its validity is confirmed. In the precision, the photoelastic experimental hybrid method for color isochromatics is better than the photoelastic experimental hybrid method for white and black isochromatics when fringe orders of isochromatics are few. When fringe orders are few, the photoelastic experimental hybrid method for color isochromatics can be used to analyze stress through few fringe orders of isochromatics.

  • PDF

Functionally Gradient Materials (FGMs) for Improved Thermo-mechanical Properties (열.기계적 특성 향상을 위한 경사기능 재료 (FGM))

  • 박성용;김진홍;김문철;박찬경
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • The basic concept of functionally gradient materials (FGM) is to fabricate materials type having possibilities of applications in various fields by changing their intrinsic properties with continuous gradient. The present communication has reviewed the developments and applications of various FGMs designed for improved thermo-mechanical properties, in which the thermal protective and wear resistant materials are especially focused. Effects of thermo-mechanical properties and limits of FGMs designed for high temperature applications were mainly understood in terms of residual stress evolved from the design and fabrication. In addition, FGMs applied in structural parts were also introduced and discussed in terms of typical fabrication method for FGMs.

Sensitivity Improvement of Shadow Moiré Technique Using LED Light and Deformation Measurement of Electronic Substrate (LED 광을 이용한 그림자 무아레 방법의 감도 향상 및 모바일 전자 기판의 변형 측정)

  • Yang, Heeju;Joo, Jinwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.141-148
    • /
    • 2019
  • Electronic substrates used in a mobile device is composed of various materials, and when the temperature is changed during manufacturing or operating, thermal deformation and stress concentration occur due to the difference in thermal expansion coefficient of each material. The shadow moiré technique is a non-contact optical method that measures shape or out-of-plane displacement over the entire area, but it is necessary to overcome the Talbot effect for high sensitivity applications. In this paper, LED light sources of various wavelengths was used to overcome the Talbot effect caused in the shadow moiré technique. By using the phase shift method, an experimental method to retain the measurement sensitivity within 10 ㎛/fringe was proposed and evaluated, and this method is applied to the thermal deformation measurement of the mobile electronic substrate. In the case of using white light, there were several areas that could not be measured due to the Talbot effect, but in the case of using blue LED light, it was shown that a precise moiré pattern with a sensitivity of 6.25 ㎛/fringe could be obtained in most areas.

Shear Strength Estimation Model for Reinforced Concrete Members (철근콘크리트 부재의 전단강도 산정모델)

  • Lee, Deuckhang;Han, Sun-Jin;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2020
  • This study presents a shear strength estimation model, in which the shear failure of a reinforced concrete (RC) member is assumed to be governed by the flexure-shear mechanism. Two shear demand curves and corresponding potential capacity curves for cracked tension and uncracked compression zones are derived, for which the bond mechanism developed between reinforcing bars and surrounding concrete is considered in flexural analysis. The shear crack concentration factor is also addressed to consider the so-called size effect induced in large RC members. In addition,unlike exising methods, a new formulation was addressed to consider the interaction between the shear contributions of concrete and stirrup. To verify the proposed method, an extensive shear database was established, and it appeared that the proposed method can capture the shear strengths of the collected test specimens regardless of their material properties, geometrical features, presence of stirrups, and bond characteristics.

Preliminary Study on the Development of a Performance Based Design Platform of Vertical Breakwater against Seismic Activity - Centering on the Weakened Shear Modulus of Soil as Shear Waves Go On (직립식 방파제 성능기반 내진 설계 Platform 개발을 위한 기초연구 - 전단파 횟수 누적에 따른 지반 강도 감소를 중심으로)

  • Choi, Jin Gyu;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.306-318
    • /
    • 2018
  • In order to evaluate the seismic capacity of massive vertical type breakwaters which have intensively been deployed along the coast of South Korea over the last two decades, we carry out the preliminary numerical simulation against the PoHang, GyeongJu, Hachinohe 1, Hachinohe 2, Ofunato, and artificial seismic waves based on the measured time series of ground acceleration. Numerical result shows that significant sliding can be resulted in once non-negligible portion of seismic energy is shifted toward the longer period during its propagation process toward the ground surface in a form of shear wave. It is well known that during these propagation process, shear waves due to the seismic activity would be amplified, and non-negligible portion of seismic energy be shifted toward the longer period. Among these, the shift of seismic energy toward the longer period is induced by the viscosity and internal friction intrinsic in the soil. On the other hand, the amplification of shear waves can be attributed to the fact that the shear modulus is getting smaller toward the ground surface following the descending effective stress toward the ground surface. And the weakened intensity of soil as the number of attacking shear waves are accumulated can also contribute these phenomenon (Das, 1993). In this rationale, we constitute the numerical model using the model by Hardin and Drnevich (1972) for the weakened shear modulus as shear waves go on, and shear wave equation, in the numerical integration of which $Newmark-{\beta}$ method and Modified Newton-Raphson method are evoked to take nonlinear stress-strain relationship into account. It is shown that the numerical model proposed in this study could duplicate the well known features of seismic shear waves such as that a great deal of probability mass is shifted toward the larger amplitude and longer period when shear waves propagate toward the ground surface.