• Title/Summary/Keyword: 응력 선도

Search Result 642, Processing Time 0.034 seconds

Numerical Analysis of Offshore Wind Turbine Foundation Considering Properties of Soft layer in Jeju (제주 연약지층 특성을 고려한 해상풍력기초의 수치해석적 연구)

  • Yang, Ki-Ho;Seo, Sang-Duk;Cho, Yee-Sun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this paper, the settlement and stress distribution is predicted by numerical analysis when the mono-pile base are constructed on various soft layer between stratified structure. To determine the settlement of the pile foundation supported on stratified rock layer, the geological investigation at the 3 regiions and the results of laboratory experiments of the stratified rock layer is required.

화학적 기상 에칭법을 이용한 고품질 질화물 반도체 나노구조 형성 연구

  • Kim, Je-Hyeong;Go, Yeong-Ho;Gong, Su-Hyeon;Go, Seok-Min;O, Chung-Seok;Park, Gi-Yeon;Jeong, Myeong-Ho;Lee, Jeong-Yong;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.182-182
    • /
    • 2012
  • 반도체 저차원 구조에서의 독특한 광학적, 전기적 특성이 연구됨에 따라 양자점, 양자선, 양자우물과 같은 공간적으로 구속되어 있는 나노구조 형성에 관한 제작 방법과 그 특성 연구가 많은 관심을 받고 있다. 하지만 Si 또는 GaAs 반도체와 달리 광소자로써 각광받고 있는 질화물 반도체의 경우, 높은 화학적, 물리적 안정성으로 인해, 화학적 에칭에 의한 나노구조 형성이 쉽지 않고, 물리적 에칭의 경우, 표면 결함이 많이 발생되는 문제점이 있어 어려움을 겪고 있다. 최근 본 연구그룹에서는 자체 개발한 고온 HCl 가스를 이용한 화학적 기상 에칭법을 이용하여, 다양한 크기, 모양의 나노구조 형성 및 이를 이용한 다양한 타입의 InGaN 나노구조 제작 및 특성에 대해 연구하였다 (Figure 1). 화학적 기상 에칭법을 이용한 나노구조의 경우, 선택적인 결함구조 제거 및 이종기판 사용에 따른 응력 감소, 광추출 효율을 증가시켜, 우수한 구조적, 광학적 특성을 보여주었고, 에칭 조건에 따른, 피라미드, 막대와 같은 다양한 나노구조를 제작하였다. 뿐만 아니라 이를 기반으로 한 다양한 InGaN 나노구조를 모델을 제시하였는데, 첫번째는 GaN 나노막대 기판 위에 형성된 고품위InGaN 양자우물구조 성장이고, 두 번째는 InGaN 양자우물을 포함하고 있는 나노막대 구조 제작, 세번째는 InGaN/GaN core/shell 구조이다 (Figure 2). 이러한 InGaN 나노구조의 경우 높은 광결정성 및 크게 감소한 내부 전기장 효과, 광방출에 유리한 구조에 기인한 우수한 광특성을 보여주고 있어 광소자로써 응용가능성이 크고, InGaN/GaN core/shell 나노구조의 경우, 나노구조 내부에 단일 InGaN양자점이 형성되어 높은 광추출효율의 양자광소자로써 활용가능성을 보여주었다.

  • PDF

Characteristic of $CuInSe_2$ thin films from Selenization using a closed Vacuum quartz box (진공 석영관에서 Selenization한 $CuInSe_2$ 박막 특성분석)

  • Yang, Hyeon-Hun;Back, Su-Ung;Kim, Han-Wool;Han, Chang-Jun;Na, Kil-Ju;Kim, Young Jun;So, Soon-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.98.1-98.1
    • /
    • 2010
  • 본 실험에서는 $CuInSe_2$ 3원물질을 화학량론적 조성비가 되도록 박막을 제조하기 위해 각 단위원소를 원자비에 맞춰 전자선가열 진공증착기를 사용하여 Cu, In, Se 순으로 증착하였다. $90^{\circ}C$이하의 온도에서 $CuIn_2$, In상이 주를 이루며, $100^{\circ}C$이상에서는 $Cu_{11}In_9$상이 나타나기 시작하고 In상이 증가하였다. $10^{-3}torr$이상의 진공석영관에서 열처리와 동시에 Selenization을 통해 제작된 $CuInSe_2$박막은 열처리온도 $250^{\circ}C$에서는 CuxSe, CuSe등의 2차상들이 나타나다가 $450^{\circ}C$이상의 고온에서 $CuInSe_2$ 단일상을 형성하였다. 이로부터 진공중에서 반응을 시켰을 때, 더 낮은 온도에서 반응이 일어나고 열역학적으로 보다 안정한 소수의 화합물들이 쉽게 형성됨을 확인할 수 있었다. 특히 $250^{\circ}C$에서는 Sphalerite 구조를 가지다가 $350^{\circ}C$이상의 온도에서 Selenization하였을 때 Chalcopyrite 구조를 가졌다. 박막이 두꺼워지면서 결정립의 크기가 커지고 응력이 작아지는 특성을 보였다. 에너지 밴드갭은($E_g$)은 Cu/In 성분비율이 클수록 작은값을 보였으며, 결절립크기가 증대되므로 결국 흡수계수가 낮아짐을 알 수 있다. 또한 두께가 증가할수록 전반적으로 흡수계수가 증가하였고 Cu/In의 성분비율이 0.97일 때 기초흡수파장은 1,169nm이고 에너지밴드갭은 1.06eV이었으며, 두께 $1.5{\mu}m$이상일 때 전반적으로 양호한 상태의 p-type $CuInSe_2$박막을 제작하였다.

  • PDF

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Kissing of Sub-conductors due to Magnetic Forces in a 154 kV Bundled Overhead Transmission Line (154 kV 복도체 가공송전선로에서 전자력에 의한 소도체간 접촉)

  • Kim, Sang-Beom;Noh, Hee-Won;Kim, Young-Hong;Ko, Kwang-Man;Park, Jong-Hyuk;Kim, Sang-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.383-389
    • /
    • 2016
  • Kissing of sub-conductors due to magnetic forces has been investigated in a 154 kV bundled overhead transmission line. With increasing ampacity of the conductors and enlarging the distance between spacers, lager magnetic force was measured. When the phase ampacity was 2,000 amps and the distance between two adjacent spacers was 68 m, for instance, the conductors became unstable and vibrated with a frequency of several herts. Furthermore, when the ampacity was 2,250 amps and the distance between spacers was 136 m, the two sub-conductors were contacted. Analysing the magnetic forces with distance of spacers, the safe distance of spacers to avoid contact of sub-conductors was presented. The change of the safe distance is discussed due to various parameters, such as residual stresses and wind pressures, in the real transmission lines.

Analysis of the Strength Characteristics of Hair Fiber Reinforced Caly Soil (헤어섬유로 보강된 점토흙의 강도 특성 분석)

  • Son, Moorak;Song, Hwasun;Lee, Jaeyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.15-25
    • /
    • 2015
  • This study aimed at the strength increase of the soft ground and analyzed the strength characteristics of clay soil reinforced with hair fiber which is environmentally friendly. The study varied the length of hair fiber, the amount of hair fiber, the amount of cement, and curing days to investigate both the compressive and tensile strengths and the stress-strain relationship of hair fiber mixed clay soils. The test results indicated that both the compressvie and tensile strengths increased with hair fiber mixed, especially in the tensile strength. In addition, the hair fiber mixed clay soil allowed larger displacement to failure. Based on the test results, it is thought that the environmentally friendly hair fiber could be utilized practically to increase the clay strength in the future.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach (성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.5-16
    • /
    • 2016
  • In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

Development of Apparatus and Methods for Understanding the Dynamics of the Western Boundary Current (서안경계류 역학을 이해하기 위한 실험 장치 및 방법 개발)

  • Jang, Swung-Hwan;Shin, Jung-Sun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.88-94
    • /
    • 2010
  • A simple laboratory device and methodology are developed for deep understanding of the western boundary current (WBC). The apparatus consists of a rotating (count-clockwise) rectangular tank with a sloping bottom in order to simulate the beta effect, the variation of the Coriolis parameter with latitude. We also used a clockwise rotating disk at the surface water to mimic the wind stress forcing in mid-latitude oceans. Four experiments were carried out using some combination of a bottom type and a rotation of the tank. Experiment with the beta effect clearly demonstrated the WBClike flow as well as the Sverdrup interior. However, the water in a tank gave rise to an inertial motion under the influence of a constant Coriolis force alone. We also discussed a stiffening of the rotating fluid on the basis of the Taylor-Proudman effect. We believe that the apparatus and methods developed in this study help to understand the WBC due to the beta effect.

Deposition process of Multi-layered Al-%Cu/Tungsten Nitride Thin Film (Magnetron sputtering 법으로 제조된 Al-1%Cu/Tungsten Nitride 다층 박막)

  • Lee, Gi-Seon;Kim, Jang-Hyeon;Seo, Su-Jeong;Kim, Nam-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.624-628
    • /
    • 2000
  • As a power durable-electrode in SAW filter, Al-1%Cu/tungsten nitride multi-layer thin film was fabricated by magnetron sputtering process. Tungsten nitride films had the amorphous phase at the nitrogen ratio, R, ranging from 10~40%. The amorphization could be controlled by nitrogen ratio, R= $N_2$/($N_2$+Ar) as a sputtering process parameter. Residual stress in tungsten nitride abruptly decreased with the formation of amorphous phase. Al-1%Cu thin film was deposited on the amorphous tungsten nitride. After the multi-layed thin film was annealed for 4 hours at 453K, the resistivity decreased as $3.6{\mu}{\Omega}-cm$, which was due to grain growth reduced crystal defects.

  • PDF