• Title/Summary/Keyword: 응력 부식 균열

Search Result 270, Processing Time 0.031 seconds

Effect of nitrogen content on pitting formation at low nickel duplex stainless steel (듀플렉스상 스테인리스강에서 질소의 함량이 공식의 형성에 미치는 영향)

  • Choe, Jong-Beom;Lee, Gyeong-Hwang;Gang, Hyeong-Gu;Lee, Myeong-Hun;Yang, Jeong-Hyeon;Gang, Jun;Yun, Yong-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.61-61
    • /
    • 2018
  • 듀플렉스 스테인리스강은 페라이트와 오스테나이트 상이 공존하는 특징을 갖는다. 그러한 구조에 의해서 페라이트와 오스테나이트상의 장점을 동시에 갖는 특성이 있다. 높은 강도와, 우수한 내식성, 응력 부식 균열 그리고 낮은 니켈의 함량 때문에 안정적인 가격을 갖는 장점을 갖기 때문에 운송, 기름과 가스, 해양플랜트, 건축 그리고 높은 강도와 우수한 내식성이 필요한 분야에서 수요가 증가할 것으로 사료된다. 이러한 듀플렉스 스테인리스강의 형성에서 페라이트와 오스테나이트상의 균형과 내식성을 개선하기 위해 질소가 첨가된다[1,2]. 본 연구는 저니켈 듀플렉스 스테인리스강(STS 329 FLD)의 공식 형성 과정에서 질소의 함량이 공식 형성과 내식특성에 미치는 영향을 동전위분극, XPS(X-ray Photoelectron Spectroscopy) 그리고 GDOES(Glow Discharge Optical Emission Spectrometry)를 이용하여 규명하였다. GDOES를 이용하여 깊이별 원소 분포를 정량적으로 비교한 결과, 부동태막에서 질소는 기저에 비하여 증가하였고, 질소의 함량이 증가함에 따라 wt.% 또한 증가하였다. 이러한 부동태막의 깊이별 원소 분포특성이 내식특성과 공식의 크기에 미치는 영향을 동전위분극을 이용하였다. 질소의 함량이 증가하였을 경우, 부식전위는 증가하였으며, 부식전류는 감소하였다. 또한 부동태전류가 감소한 것을 확인할 수 있었다. 이러한 차이의 원인을 확인하기 위하여 XPS를 이용하여 질소의 화학적 상태를 확인하였다. 질소는 암모니아의 형태로 존재하는 것으로 확인되었다. 암모니아 상태로 부동태막에 존재함에 따라 공식이 형성될 때, 암모늄 화함물을 형성하여 공식 내부의 산성도를 낮춤으로써 공식의 형성이 억제된 것으로 사료된다. 또한 공식 이후의 표면을 관찰 할 경우 질소의 함량이 증가함에 따라 표면에서 공식이 거의 관찰되지 않았다.

  • PDF

Fatigue Fracture Characteristics by Corrosion Degradation of 12Cr Alloy Steel (12Cr합금강의 부식열화에 의한 피로파괴 특성)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.996-1003
    • /
    • 2001
  • In order to investigate the fatigue fracture characteristics by corrosion degradation of 12Cr alloy steel, both the fatigue characteristics in air of them artificially degraded during long period and the corrosion fatigue characteristics were experimentally evaluated in various environments which were determined from electro-chemical polarization tests. And also, their fracture mechanisms were analyzed and compared, fractographyically. From their results, the fracture mechanical characteristics of it artificially degraded during long period in the distilled water, 3.5 wt.% NaCl solution and 12.7wt.%(1M) Na$_2$SO$_4$solution of 25, 60 and 90$\^{C}$ did not show distinguishable difference comparing with non-corroded one in regardless of temperature and degradation period. It means that degradation of the material by just surface corrosion does not remarkably affect to fatigue crack growth. On the other hand, the crack growth rates by corrosion fatigue increased due to activity increase of corrosive factors such as OH(sub)-,Cl(sup)- and SO$_4$(sup)- at the crack tip with temperature increase. Therefore, the crack growth rates by corrosion fatigue were more faster than that in air of the artificially degraded specimen due to the such difference of crack growth mechanism.

Stress Distributions at the Dissimilar Metal Weld of Safety Injection Nozzles According to Safe-end Length and SMW Thickness (안전단 길이 및 동종금속용접부 두께 변화에 따른 안전주입노즐 이종금속용접부의 응력분포)

  • Kim, Tae-Jin;Jeong, Woo-Chul;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.979-984
    • /
    • 2015
  • In the present paper, we evaluate the effects of the safe-end length and thickness of the similar metal weld (SMW) of safety injection nozzles on stress distributions at the dissimilar metal weld (DMW). For this evaluation, we carry out detailed 2-D axisymmetric finite element analyses by considering four different values of the safe-end length and four different values of the thickness of SMW. Based on the results obtained, we found that the SMW thickness affects the axial stresses at the center of the DMW for the shorter safe-end length; on the other hand, it does not affect the hoop stresses. In terms of the safe-end length, the values of the axial and hoop stresses at the inner surface of the DMW center increase as the safe-end length increases. In particular, for the cases considered in the present study, the stress distributions at the DMW center can be categorized according to certain values of safe-end length.

Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles (유한요소 해석변수가 원자로 배관 노즐 이종금속용접부의 용접잔류응력에 미치는 영향)

  • Soh, Na-Hyun;Oh, Gyeong-Jin;Huh, Nam-Su;Lee, Sung-Ho;Park, Heung-Bae;Lee, Seung-Gun;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • In early constructed nuclear power plants, Ni-based Alloys 82/182 had been widely used for dissimilar metal welds (DMW) as a weld filler metal. However, Alloys 82/182 have been proven to be susceptible to primary water stress corrosion cracking (PWSCC) in the nuclear primary water environment. The formation of crack due to PWSCC is also influenced by weld residual stresses. Thus, the accurate estimation of weld residual stresses of DMW is crucial to investigate the possibility of PWSCC and instability behaviors of crack due to PWSCC. In this context, the present paper investigates weld residual stresses of nuclear reactor piping nozzles based on 2-D axi-symmetric finite element analyses based on layer-based approach using maximum molten bead temperature. In particular, the effect of analysis parameters, i.e., a thickness of weld layer, an initial molten bead temperature, convection heat transfer coefficient, and geometric constraints on predicted weld residual stresses was investigated.

The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material (자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향)

  • Ki, Woo-Tae;Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyeong-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Effect of Lead Concentration on Surface Oxide Formed on Alloy 600 in High Temperature and High Pressure Alkaline Solutions (고온, 고압 알칼리 수용액에서의 Alloy 600 산화막 특성에 미치는 납 농도 영향)

  • Kim, Dong-Jin;Kim, Hyun Wook;Moon, Byung Hak;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.96-102
    • /
    • 2012
  • Outer diameter stress corrosion cracking (ODSCC) has occurred for Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) during long term operation. Among many causes for SCC, lead (Pb) is known to be one of the most deleterious species in the secondary system. In the present work, the oxide formed on Alloy 600 was characterized as a function of the PbO content in 0.1 M NaOH at $315^{\circ}C$ by using an electrochemical impedance spectroscopy (EIS), a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDS). The oxide property was analyzed in view of SCC susceptibility.

Characteristics of High Frequency Induction-Hardened Bearing Steel Produced by VIM (VIM에 의해 제조된 고주파 유도경화 베어링강의 특성에 관한 연구)

  • Choe, Byeong-Yeong;Jang, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1176-1181
    • /
    • 1998
  • Characteristics of high frequency induction- hardened bearing steel have been investigated using 0.55wt.% C-1.68wt.% Mn specimens produced by vacuum induction melting (VIM). The K4 value in DIN 57602 of the specimens was assessed to be 6.41, high level of cleanliness. The specimens were high frequency induction-hardened to form heterogeneous submicron- lath martensite in the surface hardened layer with about 2.5mm in effective depth. Rolling contact fatigue tests were conducted in elasto-hydrodynamic lubricating conditions under a maximum Hertzian contact stress of$ 492kgmm^{-2}$ . It was found that microhardness in the subsurface, up to about $500\mu\textrm{m}$ in depth, below the raceway of rolling contact fatigued specimens was increased in comparison with that of induction-hardened layers. The depth of maximum microhardness- increased region was about $100\mu\textrm{m}$ from surface, showing white etching area. Crack initiation and propagation in the white etching area below the raceway of rolling contact fatigued specimens were observed.

  • PDF

Laboratorial technique for fabrication of outer diameter stress corrosion cracking on steam generator tubing (증기발생기 전열관 2차측 응력부식균열의 실험실적 모사 방법)

  • Lee, Jae-Min;Kim, Sung-Woo;Hwang, Seong-Sik;Kim, Hong-Pyo;Kim, Hong-Deok
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.112-119
    • /
    • 2014
  • In this work, it is aimed to develop the fabrication method of axial stress corrosion cracking (SCC) defects having various sizes, on the outer diameter surface of the steam generator (SG) tubings. To control the length of the artificial SCC defect, the specific area of the SG tubing samples was exposed to an acidic solution after a sensitization heat treatment. During the exposure to an acidic solution, a direct current potential drop (DCPD) method was adopted to monitor the crack depth. The size of the SCC defect was first evaluated by an eddy current test (ECT), and then confirmed by a destructive examination. From the comparison, it was found that the actual crack length was well controlled to be similar to the length of the surface exposed to an acidic solution (5, 10, 20 or 30 mm in this work) with small standard deviation. From in-situ monitoring of the crack depth using the DCPD method, it was possible to distinguish a non-through wall crack from a through wall crack, even though the depth of the non-through wall crack was not able to be precisely controlled. The fabrication method established in this work was useful to simulate the SCC defect having similar size and ECT signals as compared to the field cracks in the SG tubings of the operating Korean PWRs.