• Title/Summary/Keyword: 응력 감지

Search Result 47, Processing Time 0.021 seconds

Stress Measurements Using Strain Gages (스트레인 게이지를 이용한 응력 측정 및 응용)

  • 강대임
    • Journal of the KSME
    • /
    • v.33 no.7
    • /
    • pp.661-670
    • /
    • 1993
  • 스트레인 게이지를 이용한 응력측정 방법 및 응력 측정시의 오차 발생의 원인에 대해서 설명하 였고 현재 많이 사용되고있는 스트레인 게이지식 로드셀의 원리 및 구조에 대해서도 설명하였다. 스트레인 게이지를 이용하여 변형도를 측정할 경우 1% 이내의 정확도를 유지하는 것이 가능하나 측정된 변형도로부터 응력을 계산할 경우 재료상수들의 부정확성으로 인하여 5% 정도의 오차가 발생할 수 있다. 스트레인 게이지를 이용한 응력 측정값은 부착위치에서의 값이므로 구조물의 최대 응력을 측정하고자 할 경우 구조물의 응력 상태를 제대로 파악하지 못하면 큰 오차가 발 생할 수 잇다. 따라서 정확한 측정을 위해서는 정확한 게이지 작업 기술과 함께 하중에 대한 대상물의 거동을 파악하는 기술 습득이 요구된다. 스트레인 게이지식 로드셀을 직접 설계 및 제작하기 위해서는 용량, 정밀도, 설치 공간, 사용조건 등을 고려하여 감지부의 형상, 감지부의 재질, 스트레인 게이지의 종류, 부착 방법, 보상회로 구성방법, 보호 케이스의 부착 여부 등을 결정하여야 하고 제작이 완료된 후 힘 표준기 등으로 교정검사를 실시하여 사용하여야만 정확한 측정을 기대할 수 있다.

  • PDF

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.

Study of IoT Module Package Design Optimization for Drop Testing by Drone (IoT 모듈 패키지 디자인 최적화 및 드론에서의 낙하해석 연구)

  • Jo, Eunsol;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.63-67
    • /
    • 2021
  • In order to detect fires that may not be visible to the naked eye, an IoT module that uses changes in Carbon dioxide (CO2) levels and temperature to effectively identify ambers (dying flames) was developed. Finite element analysis was then used to optimize the packaging for this module. Given the nature of ambers, the low power long range LoRa (Long Range) technology was used in the development of this module. To protect the module, a number of packages were designed, and comparative analysis performed on the stress generated when they fall. The results of which show that Model C showed the lowest stress. In addition, unlike other models in which stress concentration was predicted in the module mounting part of the package, in this model the stress concentration phenomenon was predicted in the wing part. It was therefore determined that this approach is ideal for protecting the internal module, and a package to which this was applied was manufactured.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

Electromechanical Properties of Smart Repair Materials based on Rapid Setting Cement Including Fine Steel Slag Aggregates (제강 슬래그 잔골재가 혼입된 초속경 시멘트 기반 스마트 보수재료의 전기역학적 특성)

  • Tae-Uk Kim;Min-Kyoung Kim;Dong-Joo Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.62-69
    • /
    • 2023
  • This study investigated the electromechanical properties of cement based smart repair materials (SRMs) according to the different amounts of fine steel slag aggregates (FSSAs). SRMs can self-diagnose the quality of repairing and self-sense the damage of repaired zone. The replacement ratios of FSSAs to sand for SRMs were 0% (FSSA00), 25% (FSSA25), and 50% (FSSA50) by sand weight. The electrical resistivity of SRMs generally decreased as the compressive stress of SRMs increased: the electrical resistivity of FSSA25 at the age of 7 hours decreased from 78.16 to 63.68 kΩ-cm as the compressive stress increased from 0 to 22.37 MPa. As the replacement ratio of FSSAs by weight of sand increased from 0% to 25%, the stress sensitivity coefficient (SSC) of SRM at the age of 7 h increased from 0.471 to 0.828 %/MPa owing to the increased number of partially conductive paths in the SRMs. However, as the replacement ratio of FSSAs further increased up to 50%, the SSC decreased from 0.828 to 0.649 %/MPa because some of the partially conductive paths changed to continued conductive ones. SRMs are expected to self-sense the quality and future damage of repaired zone only by measuring the electrical resistivity of the repaired zone in addition to fast recovery in the mechanical resistance of structures.

Investigation of the Electromechanical Response of Smart Ultra-high Performance Fiber Reinforced Concretes Under Flexural (휨하중을 받는 스마트 초고강도 섬유보강 콘크리트의 전기역학적 거동 조사)

  • Kim, Tae-Uk;Kim, Min-Kyoung;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.57-65
    • /
    • 2022
  • This study investigated the electromechanical response of smart ultra-high performance fiber reinforced concretes (S-UHPFRCs) under flexural loading to evaluate the self-sensing capacity of S-UHPFRCs in both tension and compression region. The electrical resistivity of S-UHPFRCs under flexural continuously changed even after first cracking due to the deflection-hardening behavior of S-UHPFRCs with the appearance of multiple microcracks. As the equivalent bending stress increased, the electrical resistivity of S-UHPFRCs decreased from 976.57 to 514.05 kΩ(47.0%) as the equivalent bending stress increased in compression region, and that did from 979.61 to 682.28 kΩ(30.4%) in tension region. The stress sensitivity coefficient of S-UHPFRCs in compression and tension region was 1.709 and 1.098 %/MPa, respectively. And, the deflection sensitivity coefficient of S-UHPFRCs in compression region(30.06 %/mm) was higher than that in tension region(19.72 %/mm). The initial deflection sensing capacity of S-UHPFRCs was almost 50% of each deflection sensitivity coefficient, and it was confirmed that it has an excellent sensing capacity for the initial deflection. Although both stress- and deflection-sensing capacity of S-UHPFRCs under flexural were higher in compression region than in tension region, S-UHPFRCs are sufficient as a self-sensing material to be applied to the construction field.

Investigation of Frozen Rock Failure using Thermal Infrared Image (열적외선영상을 이용한 동결된 암석의 파괴특성 연구)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.144-154
    • /
    • 2015
  • Mechanical energy is accumulated in the object when stress is exerted on rock specimens, and the failure is occurred when the stress is larger than critical stress. The accumulated energy is emitted as various forms including physical deformation, light, heat and sound. Uniaxial compression strength test and point load strength test were carried out in low temperature environment, and thermal variation of rock specimens were observed and analyzed quantitatively using thermal infrared camera images. Temperature of failure plane was increased just before the failure because of concentration of stress, and was rapidly increased at the moment of the failure because of the emission of thermal energy. The variations of temperature were larger in diorite and basalt specimens which were strong and fresh than in tuff specimens which were weak and weathered. This study can be applied to prevent disasters in rock slope, tunnel and mine in cold regions and to analyze satellite image for predicting earthquake in cold regions.

Methodology to Measure Stress Within Sand Ground Using Force Sensing Resistors (박막형 압전 센서를 활용한 사질토 지반 지중 응력 측정 방법론)

  • Kim, Dong Kyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • Stress is an invisible physical quantity, necessitating the use of earth pressure cells for its measurement within theground. Traditional strain-gauge type earth pressure cells, due to their rigidity, can distribute stress within the ground and subsequently affect the accuracy of earth pressure measurements. In contrast, force sensing resistors are thin and flexible, enabling the minimization of stress disturbance when measuring stress within the ground. This study developed a system that utilizes force sensing resistors to measure ground stress. It involved constructing a soil chamber for calibrating the force sensing resistors, assessing the variability of measurements from resistors embedded in sand ground, and verifying the attachment of pucks to the sensing area of the resistors.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ (거미의 감각기관을 모사한 초민감 균열기반 진동압력센서)

  • Suyoun Oh;Tae-il Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Spiders detect even tiny vibrations through their vibrational sensory organs. Leveraging their exceptional vibration sensing abilities, they can detect vibrations caused by prey or predators to plan attacks or perceive threats, utilizing them for survival. This paper introduces a nanoscale crack-based sensor mimicking the spider's sensory organ. Inspired by the slit sensory organ used by spiders to detect vibrations, the sensor with the cracks detects vibrations and pressure with high sensitivity. By controlling the depth of these cracks, they developed a sensor capable of detecting external mechanical signals with remarkable sensitivity. This sensor achieves a gauge factor of 16,000 at 2% strain with an applied tensile stress of 10 N. With high signal-to-noise ratio, it accurately recognizes desired vibrations, as confirmed through various evaluations of external force and biological signals (speech pattern, heart rate, etc.). This underscores the potential of utilizing biomimetic technology for the development of new sensors and their application across diverse industrial fields.