• Title/Summary/Keyword: 응력해석

Search Result 5,769, Processing Time 0.025 seconds

고리2호기 원자로 헤드관통관 응력해석

  • 박종일;최광희;홍승열
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.176-181
    • /
    • 1996
  • 원자로 용기 헤드부위의 관통관은 재질이 Inconel-600이며, 현재 세계각국에서도 원자로 헤드 관통관의 균열이 일부 발견되어 우리나라에서도 관심이 되고 있다. 국내 원전 헤드관 통관 수량도 고리 1,2호기의 경우 40개, 고리3,4호기(영광1,2) 61개, 울진 57개로서 관통관의 균열결함이 존재할 수 있다. 만약 균열이 성장하여 파손 되었을 시 원자로 냉각재 누설등 발전소 안전에 큰영향을 미치므로 균열의 원인으로 알려진 용접부위 잔류응력 및 발전소 정상운전 상태에서의 응력을 해석하였다.

  • PDF

Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method (모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석)

  • Ko, Jun-Bok;Lim, Young-Hoon;Lee, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1339-1344
    • /
    • 2010
  • MSM (Modal Superposition Method) is a technique for analyzing structural durability by taking the vibration characteristics into consideration. In this paper, MSR (Modal Stress Recovery) method, which is similar to MSM, was reviewed to check its validity as a durability analysis method. The MSR method directly calculates the modal displacement time history in multibody dynamics analysis; as a result, the total analysis time is shorter than that of MSM method. We conduct durability analysis using the MSR method and a durability test of a torsion beam axle that is affected by various road loads within the natural frequency of the beam axle. The analysis results for critical location and durability were in good agreement with the respective test results. Therefore, durability analysis using the MSR method is effective in predicting the durability of the structures of various dynamic systems.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Long-Rails Stress Analysis of High-Speed Railway Continuous Bridges Subject to Operating Basis Earthquake (사용지진을 고려한 고속철도 연속교 장대레일의 응력 해석)

  • 김용길;권기준;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.59-66
    • /
    • 2002
  • Long-rails in railways and high-speed railway are subjected to additional stresses resulted from the displacements inconsistence between upper structures, and this phenomenon is more remarkable in continuous bridges than in simple bridges. For the sake of safety, railways have to guarantee trains to stop safely without derailment even in the event of earthquake. The influences of acceleration, braking, and temperature were analyzed by static nonlinear method. But earthquake loads that require dynamic nonlinear analysis are not considered in these methods. Because linear relation between relative displacements of decks and rail stresses is not guaranteed at the nonlinear systems such as long rails on the bridges, it is required compute to rail stresses considering both braking and earthquake load by nonlinear dynamic analysis method. In this study, dynamic analysis method with material non-linearity for rails on continuous bridges according to the Taiwan High Speed Railway(THSR) Design Specification volume 9 was developed. And additional stresses and displacements of long rails for acceleration, braking, and earthquake loads were analyzed by this method.

A study on the residual stress at the weld joint of 2.25Cr-1.6W heat resistant steel (보일러용 배관재 2.25Cr-1.6W계 내열강의 용접부 응력 해석)

  • Lee, Y.S.;Lee, K.W.;Lee, J.B.;Kim, Y.D.;Kong, B.W.;Ryu, S.H.;Kim, J.T.;Kim, B.S.;Jang, J.C.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.62-62
    • /
    • 2009
  • 석탄화력발전소의 CO2배출량 감소와 고효율, 대용량화로 인해 초초임계압(USC:Ultra Super Critical) 화력발전소의 건설이 증가하고 있다. USC 발전소는 효율향상을 위한 증기온도와 압력의 상승 때문에 보일러 고온고압부에 기존의 소재에 비해 고온강도와 내산화성의 재료물성이 향상된 신소재 적용이 불가피하다. 특히 사용된 신소재 중에서 보일러 본체를 구성하는 수냉벽관(Water wall), 과열기와, 재열기용 튜브 및 후육부인 헤더와 배관재로 기존의 2.25Cr-1Mo강을 개량한 2.25Cr-1.6W계 내열강이 적용되고 있다. 2.25Cr-1.6W강은 SMI와 MHI가 공동개발한 소재로 1995년 튜브제품이, 1999년에 단조, 파이프재, 플레이트제품이 ASME code case로 등재되었고, 2009년 ASME code case 2199-4로 개정되어 사용 중이다. 이 소재는 2.25Cr-1Mo강에 고온강도 개선을 위해 석출강화효과가 있는 V과 Nb을 첨가하였고, 탄화물의 열적안정성과 고용강화효과 증대를 위해 W을 첨가하였다. 그리고 제작성과 용접성 및 재료의 인성 향상을 위해 B첨가와 C함량을 낮추었다. 합금성분의 첨가와 조정에 의해 고온강도는 개선되었지만, 보일러 설치 및 보수를 위한 용접과정에서 용접금속과 CGHAZ(Coarse Grain HAZ)에서 용접균열이 발생하였다. 대부분의 용접균열은 용접결함이나 고온 혹은 저온균열이 아닌 2.25Cr-1.6W계강의 강도 개선을 위해 첨가한 V과 Nb이 용접후열처리 도중 입내에 MX형태의 미세석출로 입내를 강화시킴으로서 발생한 재열균열 민감성 증대에 기인된 것으로 판단된다. 이에 본 연구에서 용접 및 후열처리 과정에서 용접금속과 HAZ에서 발생하는 용접금속의 응력분포를 전산해석을 통해 확인하고 실제 후육파이프 용접부에서 잔류응력을 측정해 비교하였다. 용접부 응력분포는 SYSWELD 프로그램을 사용해 해석을 수행하였고, 발전소 실배관재의 용접부 응력측정은 수평부 측정이 용이하도록 지그를 부착한 Potable 잔류응력측정기를 사용해 Hole Drilling Method(HDM)를 적용하여 잔류응력을 측정하였다. 해석 결과 CGHAZ부위의 잔류응력이 용접금속과 기타 부위에 비해 높은 응력분포를 나타냈으며, 이는 CGHAZ와 용접용융선 부근에서 균열이 발생하는 실제값과 일치하는 결과를 보였다. 실제 배관재 용접부에서 측정한 잔류응력값은 항복응력의 약 50% 이하 응력값을 나타냈다. 배관 구조에 기인한 시스템응력의 영향을 제거하기 위해 배관재 용접부를 중심으로 양끝단을 절단 후 용접부에서 측정한 응력은 항복응력 대비 25%수준의 낮은값을 보였다. 그러나 배관재가 장기간 고온환경에 노출되었고 용접금속 내부의 균열이 발생한 상태에서 측정하였기 때문에 용접잔류응력은 상당부분 해소되어 상대적으로 낮은 응력값이 얻어진 것으로 판단된다.

  • PDF

Horizontal Stress Based on the Calculation of Lateral Stress Ratio in Unsymmetrical Space (비대칭 공간의 수평응력비 산정에 따른 수평응력에 관한 연구)

  • Moon Chang-Yeul;Lee Soo-Ki;Kwon Seung-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.177-189
    • /
    • 2004
  • The backfilled space carl have various shapes such as vertical or lateral symmetric, unsymmetric slope depending on field conditions. Kellogg (1993) suggested the different equations for the backfill earth pressure and the lateral stress ratio considering that the stresses are different between the symmetrically sloped backfilled space and the vertical one. Kellogg (1993) assumed the stress generated on sloped wall surface as the simple internal friction angle of backfilled soil. However, Moon (1997) suggested modified Kellogg equation assuming that stress behavior in the sloped wall will be varied according to the rotation angle of principal stress and the friction of sloped wall surface. This study has compared and investigated the horizontal stresss of unsymmetrical backfilled space numerically and experimentally obtained when Kellogg lateral stress ratio is appled to and when average lateral stress ratio considering unsymmetric backfill slop of left and right are applied to the modified Kellogg equation. It is shown that the horizontal stress on the sloped wall has good match numerically and experimentally in the modified Kellogg equation when Kellogg's lateral stress ratio in symmetric condition is applied to the unsymmetric condition. But the horizontal stress on the vertical wall shows disagreement numerically and experimentally. The horizontal stress results in good agreement numerically and experimentally when the average lateral stress ratio of left and right at unsymmetric slop as applied to the modified Kellogg equation. Therefore, it is estimated that the application of the average lateral stress ratio to the left and right wall should be considered when backfilled space formed unsymmetric conditions.

True Stress-True Strain Curves Obtained by Simulating Tensile Tests Using Finite Element Program (인장시험을 유한요소해석 시뮬레이션하여 진응력-진변형도 곡선을 결정하는 방법)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • In the tensile test necking occurs at the maximum load point and non-uniform stress state is generated in this section. The equivalent stress becomes quite different from the axial stress as necking proceeds. Methods for obtaining the true stress-true strain curves, by overcoming difficulties due to the necking phenomena, have been developed by many authors. One of the methods based on the finite element analysis simulation is a very promising method. In this paper, general-purpose finite element program is used to simulate the tensile test. A round specimen and a flat specimen prepared from the same steel block are tested and simulated. The true stress-true strain curves are determined without assuming that the material follows Hollomon's law.

Finite Element Analysis of the Residual Stress by Cold Expansion Method under the Influence of Adjacent Holes (인접 홀의 영향을 받는 홀 확장 잔류응력의 유한요소해석)

  • Kim, Cheol;Yang, Won Ho;Seok, Chang Seong;Kim, Dae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.79-84
    • /
    • 2003
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. Despite its importance to aerospace industries, little attention has been devoted to the accurate modeling of the process. This study is devoted to the modeling and simulation of the residual stress resulting from the cold expansion of two adjacent fastener holes. Simultaneous cold expansion of two adjacent holes lead to much higher compressive residual stress than sequential cold expansion.

An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading (유안요소법에 의한 식중응력의 해석)

  • Park, Byeong-Gi;Lee, Mun-Su;Lee, Jin-Su
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-84
    • /
    • 1985
  • This Paper aims at investigating the distribution of stresses and the displacement of soft foundation layer subject to embankment load by the finite elements method (FEM). The stresses include the volumetric stress, the Pore water Pressure, the vertical stress. The horizontal stress and the shear stress. The Christian-Boehmer's method was selected as technique for FEM and the general elasticity model and modified Cam-clay model as the governing equations under Plain-strain condition depending on drained and undrained conditions. The results obtained are as follows: 1. The volumetric stress is almost consistent with the pore water pressure. This means that the total stress is the same value with the pore water pressure under the undrined condition 2. The vertical stress appears in the same value regardless of the drained or undrained condition and the model of the constitutive equations. 3. The horizontal stress has almost same value with the drain condition model. 4. depending on the constitutive model. The shear stress is affected by both the drain condition and the constitute model. The resulted value by the modified Cam-clay model has the largest. 5. The direction of the displacement vector turns outward near the tip of load during the increasing load. 6. The magnitude of displacement due to the modified Cam.clay model is as twice large as that due to elastic model.

  • PDF