• Title/Summary/Keyword: 응력파단시험

Search Result 119, Processing Time 0.022 seconds

Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature (Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측)

  • Kim, Jin Yeol;Yoon, Dong Hyun;Kim, Jae Hoon;Bae, Si Yeon;Chang, Sung Yong;Chang, Sung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.765-770
    • /
    • 2017
  • GTD111 DS of nickel base superalloy has been used for gas turbine blades. In this study, low cycle fatigue test was conducted on the GTD111 DS alloy by setting conditions similar to the real operating environment. The low cycle fatigue tests were conducted at room temperature, $760^{\circ}C$, $870^{\circ}C$, and various strain amplitudes. Test results showed that fatigue life decreased with increasing total strain amplitude. Cyclic hardening response was observed at room temperature and $760^{\circ}C$; however, tests conducted at $870^{\circ}C$ showed cyclic softening response. Stress relaxation was observed at $870^{\circ}C$ because creep effects occurred from holding time. A relationship between fatigue life and total strain range was obtained from the Coffin-Manson method. The fratography using a SEM was carried out at the crack initiation and propagation regions.

AN EXPERIMENTAL STUDY ON THE TENSILE STRENGTH OF POSTERIOR RESIN-BASED COMPOSITES (구치부 복합레진의 인장강도에 관한 실험적 연구)

  • Kim, Jae-Gon;Lee, Yong-Hee;Yang, Cheol-Hee;Baik, Byeong-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.464-470
    • /
    • 2001
  • The purpose of this study was to evaluate the tensile strength of light-cured restorative posterior resin-based composites. Five commercially available light-cured composites(Denfil : DF, P60 : PS, Unifil S : US, Z100 : ZH, Z250 : ZT) were used. Rectangular tension test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. Specimens were subjected to the 5,000 thermal cycles between $5^{\circ}C$ and $55^{\circ}C$ and the immersion time in each bath was 15 second per cycle. Tensile testing was carried out with Instron at a crosshead speed of 0.5mm/min and fractured surface were observed with scanning electron microscope. The obtained results were summarized as follows; 1. The tensile strength of PS was highest. PS was significantly higher than DF, US and ZH(p<0.05) but in the case of ZT was similar to PS(p>0.05). 2. The tensile strength DF was lowest. DF was significantly lower than PS, US, ZH and ZT(p<0.05). 3. The tensile strength of US and ZH were significantly lower than PS and ZT(p<0.05). but were significantly higher than DF(p<0.05). The tensile strength of US and ZH were similar(p>0.05).

  • PDF

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Tensile and Fatigue Behavior of ASS304 for Cold Stretching Pressure Vessels at Cryogenic Temperature (Cold Stretching 압력용기용 ASS304 소재의 극저온 인장 및 피로거동)

  • Choi, Hoon Seok;Kim, Jae Hoon;Na, Seong Hyun;Lee, Youn Hyung;Kim, Sung Hun;Kim, Young Kyun;Kim, Ki Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.429-435
    • /
    • 2016
  • Cold stretching(CS) pressure vessels from ASS304 (austenitic stainless steel 304) are used for the transportation and storage of liquefied natural gas(LNG). CS pressure vessels are manufactured by pressurizing the finished vessels to a specific pressure to produce the required stress ${\sigma}_k$. After CS, there is some degree of plastic deformation. Therefore, CS vessels have a higher strength and lighter weight compared to conventional vessels. In this study, we investigate the tensile and fatigue behavior of ASS304 sampled by CS pressure vessels in accordance with the ASME code at cryogenic temperature. From the fatigue test results, we show S-N curves using a statistical method recommended by JSEM-S002. We carried out the fractography of fractured specimens using scanning electron microscopy (SEM).

Freshness Maintenance of Polyethylene Film Containing Surface-modified Zeolite (표면 개질된 제올라이트를 포함한 폴리에틸렌 필름의 선도유지기능)

  • Chun Byoung Chul;Lee Seong Jae;Chung Mi Hwa;Park Jung Hwan;Park Hee Woo;Chung Yong-Chan;Kweon Oh Cheul
    • Food Science and Preservation
    • /
    • v.11 no.4
    • /
    • pp.478-484
    • /
    • 2004
  • Freshness maintenance of polyethylene packaging film containing surface-modified zeolite was investigated depending on the nature of substituted cations and cationic surfactants. Freshness maintenance was designed to work by cation or cationic surfactant adsorbed onto the zeolite surface by ion-exchange method. Cationic surfactants such as DODAB (n-dodecyltrimethylammonium bromide), CTAB (n-cetyltrimethylammonium bromide), and DHAB (n-dihexadecyldime-thylammonium bromide), and cations ($Ce^{3+},\;Al^{3+},\;Mg^{2+},\;Ca^{2+},\;Ag^{3+},\;Na^{1+}\;and\;Cu^{3+}$) were used. Surface-modified zeolite powder was compounded with LDPE to produce $20\;wt\%$ zeolite masterbatch (M/B), and the M/B was again blended with LDPE to get zeolite-containing LDPE films with 3, 5, $10\;wt\%$ of zeolite (width: 40 cm, thickness: $40\;{\mu}m$). Mechanical properties of zeolite-containing LDPE films generally decreased with increasing zeolite content. However, cationic surfactant-modified zeolite film showed the better mechanical properties compared to cation-modified zeolite film. As for the freshness maintenance, the zeolite-containing films modified with cationic surfactants or cations ($Al^{3+},\;Ag^{3+}$) showed the best performance.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

An Experiment of Structural Performance of Expansion Joint with Rotation Finger (가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험)

  • Yoo, Sung won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.170-175
    • /
    • 2018
  • For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

모재/중간층/박막의 H/E ratio 구배에 따른 Cr계 경질 박막의 기계적 특성에 관한 연구

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.135-135
    • /
    • 2018
  • 천이금속 질화물 코팅은 우수한 기계적 특성들로 인해 공구 코팅으로 많이 사용 되어왔다. 그 중에서도 특히 Cr계 경질 코팅은 높은 경도와 낮은 표면조도, 우수한 마찰특성 등 뛰어난 기계적 특성을 나타내므로 공구 코팅으로의 적용 가능성이 크다. 그러나 최근 공구산업의 발전으로 인해 공구가 더욱 가혹한 환경에서 사용됨에 따라, 공구의 수명을 향상시키고 보호하기 위해 코팅의 높은 밀착력이 요구되고 있으며, 모재와 코팅 사이에 중간층을 합성함으로써 공구의 밀착력을 향상시키는 연구가 활발히 진행되고 있다. 이전 연구에서 모재/중간층/코팅간의 경도와 탄성계수 비율(H/E ratio)의 구배가 코팅의 밀착력에 큰 영향을 미치는 것으로 확인되었다. 그러므로, WC 모재와 Cr계 코팅의 중간값의 H/E ratio를 갖는 중간층의 합성을 통해 코팅의 밀착력을 향상시킬 수 있을 것으로 판단된다. 본 연구에서는, 코팅의 밀착력을 향상시키기 위해 다양한 중간층을 증착한 CrZrN, CrAlN 코팅을 비대칭 마그네트론 스퍼터링 장비를 이용하여 합성하였다. 모재로는 디스크 형상의 WC-6wt.%Co 시편을 사용하였고 Cr, Zr, Si, Al single 타겟을 이용하여 Cr, CrN, CrZrN, CrZrSiN 등의 중간층이 증착된 코팅을 합성했다. 코팅의 합금상, 경도 및 탄성계수, 미세조직 및 조성, 표면 조도을 확인하기 위해 X-ray diffractometer (XRD), Fischer scope, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy를 사용하였고, 코팅의 밀착 특성을 분석하기 위해 scratch tester와 optical microscopy (OM)를 이용하였다. 코팅의 내열성을 확인하기 위해 코팅을 furnace에 넣어 공기중에서 500, 600, 700, 800, 900, $1,000^{\circ}C$로 30분 동안 annealing 한 후에 nano-indentation을 사용하여 경도를 측정하였다. CrZrN 및 CrAlN 코팅을 나노 인덴테이션으로 분석한 결과, 모든 코팅의 경도(33.4-35.8 GPa)와 탄성계수(384.1-391.4 GPa)는 중간층의 종류에 상관없이 비슷한 값을 보인 것으로 확인됐다. 그러나, 코팅의 마찰계수는 중간층의 종류에 따라 다른 값을 보였다. CrZrN 코팅의 경우 CrN 합금상 중간층을 갖을 때 가장 낮은 값을 보였으며, CrAlN 코팅의 경우 CrN/CrZrSiN 중간층을 증착하였을때 마찰계수는 0.34로 CrZrN 중간층을 증착하였을 때(0.41)에 비해 낮은 값을 보였다. 또한, 코팅의 마모율 및 마모폭도 비슷한 경향을 보인 것으로 보아, CrN/CrZrSiN 중간층을 합성한 CrAlN 코팅의 내마모성이 상대적으로 우수한 것으로 판단된다. 코팅의 밀착력의 경우도 마찰계수와 비슷한 경향을 보였다. 이것은 중간층의 H/E ratio가 코팅의 내마모성에 미치는 영향에 의한 결과로 사료된다. H/E ratio는 파단시의 최대 탄성 변형율로써, 모재/중간층/코팅의 H/E ratio 구배에 따라 코팅 내의 응력의 완화 정도가 변하게 된다. WC 모재 (H/E=0.040)와 CrAlN 코팅(H/E=0.089) 사이에서 CrN, CrZrSiN 중간층의 H/E ratio는 각각 0.076, 0.083으로 모재/중간층/코팅의 H/E ratio 구배가 점차 증가함을 확인 할 수 있었고, 일정 응력이 지속적으로 가해지면서 진행되는 마모시험중에 CrN과 CrZrSiN 중간층이 WC와 CrAlN 코팅 사이에서 코팅 내부의 응력구배를 완화시키는 역할을 함으로써 CrAlN 코팅의 내마모성이 향상된 것으로 판단된다. 모든 코팅을 열처리 후 경도 분석 결과, CrN/CrZrSiN 중간층을 증착한 CrAlN 코팅은 $1,000^{\circ}C$까지 약 28GPa의 높은 경도를 유지한 것으로 확인 되었고, 이는 CrZrSiN 중간층 내에 존재하는 SiNx 비정질상의 우수한 내산화성에 의한 결과로 판단된다.

  • PDF