• Title/Summary/Keyword: 응력이완

Search Result 163, Processing Time 0.028 seconds

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Experimental study on the relaxation zone depending on the width and distance of the weak zone existing ahead of tunnel face (터널 굴진면 전방에 위치한 연약대 폭과 이격거리에 따른 이완영역에 대한 실험적 연구)

  • Ham, Hyeon Su;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.855-867
    • /
    • 2018
  • When a weak zone exists ahead of tunnel face, the stress in the adjacent area would increase due to the longitudinal arching effect and the stability of the tunnel is affected. Therefore, it is critical to prepare a countermeasure through the investigation of the frontal weakness zone of the excavated face. Although there are several researches to predict the existence of weak zone ahead of tunnel face, such as geophysical exploration, numerical analysis and tunnel support, lack of studies on the relaxation zone depending on the width or distance from the vulnerable area. In this study, the impact of the weak zone on the formation of the relaxation zone was investigated. For this purpose, a series of laboratory test were carried out varying the width of the weak zone and the separation distance between tunnel face and weak zone. In the model test, sand with a water content of 3.8% was used to form a model ground. The model weak zone was constructed with dry sand curtains. The tunnel face was adjusted to allow a sequential excavation of upper and lower half part. load cells were installed on the bottom of the foundation and the tunnel face and measuring instruments for displacement were installed on the surface of the model ground to measure the vertical stress and surface displacements due to tunnel excavation respectively. The test results show that the width of weak zone did not affect the ground settlement while the ground subsidence drastically increased within 0.25D. The vertical stress and horizontal stress increased from 0.5D or less. In addition, the longitudinal arching effect is likely within the 1.0D zone ahead of the tunnel face, which may reduce the vertical stress in the ground following tunneling direction.

Shrinkage Stress Analysis of Concrete Slab in Multi-Story Building Considering Construction Sequence (시공단계를 고려한 고층건물 콘크리트 슬래브의 건조수축 응력해석)

  • 김한수;정종현;조석희
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.457-465
    • /
    • 2001
  • Shrinkage strains of concrete slab in multi-story building are restrained by structural members such as columns or walls, then can induce cracks due to excessive shrinkage stress over tensile strength of member. In this study, a shrinkage stress analysis method of concrete slab in multi-story building considering not only material properties such as shrinkage, creep and reinforcement effect but also construction sequence is proposed. Tensile stresses of slab due to shrinkage are calculated by converting shrinkage strains into equivalent temperature gradients, creep that can release shrinkage stress can be considered by replacing the modulus of elasticity of concrete, Ec , to the effective secant modulus of elasticity of concrete, E$\_$eff/ Reinforcements are also considered by modeling them as equivalent beam elements in FEM program. Results of step by step analysis reflecting construction sequence summed up to calculate stresses of the whole building considering that shrinkage stresses of the building come from the difference of shrinkage between i-th floor and (i-1)-th floor, named as effecitive shrinkage, and it can be varied by construction sequence. The results of 10-story example building show that shrinkage stresses of lower floors are greater than those of upper floors, that is, stresses of lower floors(1∼2FI.) exceed modulus of rupture of concrete, but stress ratios of higher floors are in the range of 27.9∼92.8%.

Effect of Chain Orientation on the Characteristics of PEN Flexible Substrate (사슬 배향이 폴리(에틸렌 나프탈레이트) 유연기판 특성에 미치는 영향)

  • Kim, Jongwha;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.711-716
    • /
    • 2013
  • The effect of chain orientation and relaxation on the characteristics of poly(ethylene naphthalate) (PEN) flexible substrate has been studied. It was found that the coefficient of thermal expansion (CTE) of PEN under $100^{\circ}C$ decreased as low as $20ppm/^{\circ}C$ due to the lowering of chain mobility by chain orientation. The thermal shrinkage was found to appear near glass transition temperature because of chain relaxation. It could be minimized by thermal annealing but CTE increased again up to $70ppm/^{\circ}C$ which was 65% of intrinsic CTE of PEN. Unstrained thermal annealing made possible to avoid the thermal shrinkage with maintaining low CTE obtained by chain orientation. Chain orientation did not affect the optical transmittance; however, thermal annealing caused the decrease of optical transmittance up to 5%. This was understood by the minor crystallization due to the thermal annealing near glass transition temperature.

Investigation on the Residual Stress Relaxation according to Annealing Condition for Transparent Injection Molded Part (투명한 사출성형품에서 어닐링 조건에 따른 잔류응력 이완에 관한 연구)

  • Cho, Jeong-Hyun;Park, Seo-Ri;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2012
  • Residual stress is developed in the injection molded articles during the molding process due to temperature variation and shear stress. The residual stress causes the deformation and warpage in the injection molded parts shortly within several days or after several years. Therefore, the injection molding conditions should be optimized to reduce the residual stress. And residual stress in the part should be also relaxed after molding process to maintain its shape. According to the annealing conditions, such as relative humidity, temperature and time, this study investigates the relaxation of residual stress generated in the transparent injection molded specimens. Through the experimental results, it was realized that the residual stress was relaxed at a relative humidity higher than 50%. Utilizing photoelasticity equipment, it was found that the residual stress was rapidly relaxed near glass transition temperature. Additionally, we recognized that the specimen shrunk along the flow direction but expanded to the perpendicular direction of the flow during the annealing processes, which resulted in the warpage of the specimen.

Analytical study of circle tunnel Load considering Dilatancy Effect (Dilatancy 효과를 고려한 원형 터널 이완하중에 대한 해석적 연구)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.626-633
    • /
    • 2020
  • This study examined the behavior of the ground by comparing the methods using the results of the Terzaghi formula and the ground investigation data and method considering the dilatancy effect for a circular tunnel using the finite element method. In the case of the Terzaghi formula, the tunnel load can be overestimated and cause overdesign. The method using the results of the ground investigation data cannot be applied when a reasonable coefficient of earth pressure is not determined. This is because it behaves completely differently from the actual behavior, and unexpected problems can occur. In the case of the method considering the dilatancy effect, however, both the strength enhancement effect can be considered through the dilatancy angle and relative density. Therefore, the tunnel load was calculated most reasonably using the method considering dilatancy. Finite element analysis using the geotechnical survey results showed that the tensile stress acts at the top of the tunnel when the upper soil of the tunnel is shallow. On the other hand, additional verification is necessary, such as a comparison with the field measurement results. Through additional research, if normalized, the tunnel load can be calculated reasonably at the time of tunnel design, and safe and economical design is possible.

Disturbance Effects on the Stiffness of Normally Consolidated Clay (정규압밀 점성토의 교란에 따른 강성 변화)

  • Park, Hae-Yong;Shin, Hyun-Young;Oh, Myoung-Hak;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.69-79
    • /
    • 2011
  • Laboratory tests are generally used to determine the input parameters for the selected constitutive models controlling various stress and drainage conditions, but have disadvantages in that the tests are performed on the samples obtained from the bore hole which are prone to be disturbed by various factors such as the tube penetrations, sample preparations and storage. To overcome these disadvantages, it is necessary to understand the effect of disturbance on the stiffness of the sample, especially the normally consolidated clays which are generally considered as soft clays. Therefore, in this study triaxial tests are performed on the normally consolidated kaolinite to evaluate the sample disturbance effects on the stiffness and to determine the field representative input parameters. The stress path results show that the shear and coupling modulus degradation patterns with strain are affected seriously by the disturbance. However, the strengths of the normally consolidated kaolinite are little influenced by the disturbance.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

UNSM Surface Technology for Manufacturing and Remanufacturing Torsion Bars for Crawler Vehicles (초음파 나노표면개질을 적용한 궤도차량용 토션바 제조 및 재제조용 표면 개질기술에 관한 연구)

  • Suh, Chang-Min;Pyoun, Young-Sik;Cho, In-Ho;Baek, Un-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.80-85
    • /
    • 2011
  • The Ultrasonic Nanocrystal Surface Modification (UNSM) technology improves the fatigue life of a torsion bar by inducing compressive residual stress on the surface layer. The UNSM is applied to replace the presetting method and shot peening technology. The torsion bar must be changed periodically because of a lack of durability and a phenomenon related to the stress relaxation. The torsion fatigue test specimens were made of DIN17221 material, and the results showed that the fatigue life was 5 times more than under durability test conditions. A comparison test between the commercial vehicles' presetting method and shot peened torsion bar and the UNSM torsion bar showed that the UNSM could replace the presetting method and shot peening.

Stress Relaxation Properties of Cucumber under Bending Moment (휨 모멘트에 대한 오이의 응력이완(應力弛緩) 특성(特性))

  • Song, C.H.;Kim, M.S.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.262-269
    • /
    • 1993
  • Stress relaxation behaviors of the cucumber under bending moment were tested with UTM at three levels of loading rate and initial deflection ratio. Sample cucumber was selected from three cultivars of cucumber, Cheongjangmadi, Baekdadagi, and Gyeousalicheongjang, because these cultivars are the most popular grown cultivars in Korea. When the bending moment was applied to the cucumber sample, the effective span between simple supports was held a constant value of 116mm with consideration of the selected sample length. The objectives of this study were to develop the rheological models such as linear and nonlinear models of the stress relaxation for the cucumber samples, and to investigate the effects of loading rate and initial deflection ratio on the stress relaxation behavior of the cucumber. The results of this study may be summarized as follows : 1. Stress relaxation behavior of the cucumber could be well described by the generalized Maxwell model for each level of deflection ratio. But the stress relaxation behavior of the sample was found to be initial deflection ratio and time dependent, and it was represented the nonlinear viscoelastic model as a function of initial deflection ratio and time. 2. Stress relaxation behavior of the cucumber samples was very highly affected by the loading rate and the initial deflection ratio. The more loading rate and initial deflection ratio resulted in the more initial bending stress and after stress relaxation progressed more rapidly. 3. At the same test conditions, it was found that the stress relaxation rate of Cheongjangmadi was faster than that of other cultivars.

  • PDF