Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.6.711

Effect of Chain Orientation on the Characteristics of PEN Flexible Substrate  

Kim, Jongwha (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
Kang, Ho-Jong (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
Publication Information
Polymer(Korea) / v.37, no.6, 2013 , pp. 711-716 More about this Journal
Abstract
The effect of chain orientation and relaxation on the characteristics of poly(ethylene naphthalate) (PEN) flexible substrate has been studied. It was found that the coefficient of thermal expansion (CTE) of PEN under $100^{\circ}C$ decreased as low as $20ppm/^{\circ}C$ due to the lowering of chain mobility by chain orientation. The thermal shrinkage was found to appear near glass transition temperature because of chain relaxation. It could be minimized by thermal annealing but CTE increased again up to $70ppm/^{\circ}C$ which was 65% of intrinsic CTE of PEN. Unstrained thermal annealing made possible to avoid the thermal shrinkage with maintaining low CTE obtained by chain orientation. Chain orientation did not affect the optical transmittance; however, thermal annealing caused the decrease of optical transmittance up to 5%. This was understood by the minor crystallization due to the thermal annealing near glass transition temperature.
Keywords
poly(ethylene naphthalate); flexible substrate; coefficient of thermal expansion; chain orientation; thermal annealing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. Iwao, H. Nobukazu, M. Yoshihiro, N. Makoto, I. Ayaka, Y. Nobuhide, N. Kazumasa, K. Jiro, Y. Akira, and U. Tetsuo, Society for Information Display, 16, 15 (2008).   DOI
2 A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, IEEE, 10, 107 (2004).
3 D. J. A. Mark, O. K. Soo, E. Guenther, and S. J. Chua, Thin Solid Films, 417, 47 (2002).   DOI   ScienceOn
4 G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 22, 172 (1997).   DOI   ScienceOn
5 H. Lim, C. M. Bae, Y. K. Kim, C. H. Park, W. J. Cho, and C. S. Ha, Syn. Materials, 49, 135 (2003).
6 H. J. Park, J. W. Park, S. Y. Jeong, and C. S. Ha, Proc. IEEE, 93, 1447 (2005).   DOI   ScienceOn
7 M. Ishikawa, Polymer, 36, 3 (1995).   DOI   ScienceOn
8 A. Toyota and M. Yamaguchi, Polym. Mater. Sci. Eng., 76, 24 (1997).
9 J. Kim, I. Kim, Y. K. Kim, and H. J. Kang, Polymer(Korea), 34, 1 (2010).
10 J. Lewis, Material Today, 9, 38 (2006).   DOI   ScienceOn
11 S. Ray, R. Banerjee, N. Basu, A. K. Batabyal, and A. K. Barna, J. Appl. Phys., 54, 3497 (1983).   DOI   ScienceOn
12 S. Takaki, K. Matsumoto, and K. Suzuki, Appl. Surf. Sci., 33, 919 (1988).
13 J. S. Lewis and M. S. Weaver, IEEE J. Select. Top. Quant. Electron., 10, 45 (2004).   DOI   ScienceOn
14 T. Matsumoto and T. Kurosaki, Macromolecules, 30, 993 (1997).   DOI   ScienceOn
15 T. Matsuura, Y. Hasuda, S. Nishi, and N. Yamada, Macromolecules, 24, 5001 (1991).   DOI
16 J. Y. Kim, S. I. Han, D. K. Kim, and S. H. Kim, Composite, Part A, 40, 45 (2009).   DOI   ScienceOn
17 J. H. Kim, H. S. Kim, and H. J. Kang, Polymer(Korea), 36, 733 (2012).
18 M. T. Pottiger, J. C. Coburn, and J. R. Edman, J. Polym. Sci. Part B: Polym. Phys., 32, 825 (1994).   DOI   ScienceOn
19 J. H. Lee, H. G. Kim, and H. J. Kang, Polymer(Korea), 36, 803 (2012).