• Title/Summary/Keyword: 응력과 변위

Search Result 1,178, Processing Time 0.029 seconds

A Study on the Stress Analysis of Oil Hydraulic Piston Pump with a Swash Plate Type (사판식 유압 피스톤 펌프의 응력해석에 관한 연구)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2424-2429
    • /
    • 2015
  • In an oil hydraulic piston pump, the cylinder block and valve plate in high speed relative sliding motion have the characteristics which should be extremely controlled for the optimization of leakage and friction losses, and pressure-resistance design of them is very important for high pressure performance. But the studies on the stress analysis of those parts have not been performed briskly. Therefore, in this paper, the stress and displacement distributions of the cylinder block and valve plate in the oil hydraulic piston pump with a swash plate type are discussed through the static stress analysis using CATIA V5. The stress and displacement of the cylinder block are more influenced by the axial pressure than by the radial pressure, and are larger by approximately 66% and 30%, respectively. The results show that a review of the material and shape of the valve plate is required.

A finite element analysis of implant-supported overdenture on the effect of anterior cantilever (임플랜트 bar overdenture에서 bar의 cantilever양이 임플랜트에 미치는 영향에 관한 삼차원 유한요소분석적 연구)

  • Jung, Tae-Wook;Kim, Young-Soo;Kim, Chang-Whe;Ling, Booi-Cie
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.1-17
    • /
    • 1998
  • 두개의 임플랜트로 지지되는 overdenture를 이용한 하악무치악환자의 치료법은 경제적이면서, 실용적인 치료로 인정을 받고 있다. 하지만 해부학적인 조건으로 임플랜트를 설측 혹은 후방에 식립해야 되는 경우에는 일반적인 bar설계는 bar가 구강저 상방을 지나게 되어 혀운동, 발음, 위생관리 등에 많은 문제점을 부여한다. 이에 대한 해결방법으로 전방부 치조제 상에 보철물의 회전을 허용하는 angular bar를 설계할 수 있다. 하지만 이 설계는 임플랜트에 불리한 moment를 유발한다. 그럼에도 불구하고 뛰어난 유지력과 지지능력, 경제적인 면 때문에 angular bar는 임상에서 많이 사용되고 있다. 이에 본 연구는 angular bar의 전방 cantilever양을 달리하여 임플랜트 및 주변조직에 미치는 영향을 삼차원 유한요소분석법을 통해서 알아보고자 하였다. 이공사이의 하악골을 단순화시킨 준하악골모형에 직경 3.75mm인 브로네마르크 임플랜트 2개를 길이가 13,15mm인 경우로 설정하여 제 1소구치 부위에 식립하였다. 두 임플랜트를 연결하는 bar는 전방부 cantilever양을 0-5mm, 1mm씩 하여 6가지 경우를 가정하고 제작하였다. 각각 bar 중앙부에 수직압 (90도) 35N, 경사압(120도) 70N, 수평압(0도) 10N을 가하였으며 이때 나타나는 응력 분산형태와 임플랜트의 골유착에 불리하게 작용하는 최대주응력(인장력)과 변위량을 살펴보았다. 연구결과 다음과 같은 결론을 얻었다. 1. Cantilever양이 증가할수록 주변피질골과 임플랜트로 응력이 집중되었으며 상부 보철물의 변위량도 커졌다. 2. Cantilever양에 대한 수평압의 영향은 크지 않았으며 임플랜트 길이가 긴 것이 변위량과 응력이 작았다. 3. 경사압에 대한 응력의 변화는 cantilever양의 증가에 따라 급격히 증가하는 양상을 띠었으며 임플랜트길이가 응력 및 변위의 양에 미치는 영향은 없었다. 4. 수직압에 대한 응력의 변화는 초기에는 완만한 증가를 보이다가 일정 시점 지난 후에는 증가율이 커지는 경향을 띠었다. 증가현상이 두드러지기 전에는 길이의 증가가 응력의 분산효과는 가져왔으나 이후에는 길이의 응력분산 효과는 없었다. 5. 응력분포양상은 cantilever양이 증가할수록 골조직을 통한 분산정도는 작아지고 특정부위의 피질골과 임플랜트, 상부보철물에 집중되는 경향을 보였다. 6. 임플랜트와 주변 골조직으로의 응력분산능력이 예후를 좌우한다는 점에서 angular bar는 적합치 못하며 부득이한 경우는 임플랜트 길이를 길게 하고 최대한 3mm이내로 cantilever양을 제한하는 것이 추천된다.

  • PDF

Multimetric Measurement Data Monitoring System Using Sigmoid Function (시그모이드 함수를 이용한 다중 계측데이터 모니터링 시스템)

  • Jeong-Ho Song;Jun-Woo Shin;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.137-149
    • /
    • 2023
  • In order to intuitively grasp the earth pressure direction acting on the structure and displacement state, displacement data in the horizontal and vertical directions were processed using the sigmoid function. A displacement coordinate system was set up for each axis. The system can intuitively check the current displacement and assess the management stage of each point. A displacement path can be compiled from continuously recorded points, allowing trends in the displacement's history and stress direction to be known. Analysis of data measured for excavated ground, found that displacement occurred in the direction of destressing at all points, and that the points' management state steady. Similar behavior trends were found among measurement points with high spatial correlation, whereas differing behavior trends occurred among measurement points with low spatial correlation. If the correlation analysis of the precursor and behavior area is performed using the continuously distributed surface settlement data and displacement coordinate system, it will be possible to predict the failure time and area.

A Study on the Fuel Assembly Stress Analysis for Seismic and Blowdown Events (지진 및 냉각재상실사고시의 핵연료집합체 응력해석에 관한 연구)

  • Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.552-560
    • /
    • 1993
  • In this study, the detailed fuel assembly stress analysis model to evaluate the structural integrity for seismic and blowdown accidents is developed. For this purpose, as the first step, the program MAIN which identifies the worst bending mode shaped fuel assembly(FA) in core model is made. And the finite element model for stress calculation of FA components is developed. In the model the fuel rods (FRs) and the guide thimbles are modelled by 3-dimensional beam elements, and the spacer grid spring is modelled by a linear and relational spring. The constraints come from the results of the program MAIN. The stress analysis of the 16$\times$16 type FA under arbitary seismic load is performed using the developed program and modelling technique as an example. The developed stress model is helpful for the stress calculation of FA components for seismic and blowdown loads to evaluate the structural integrity of FA.

  • PDF

Problems Double Integration of an Acceleration to Determine Displacement Characteristics of a Structure under Moving Load (이동하중을 받는 보의 변위응답 산정을 위한 가속도신호의 적분상 문제점)

  • 양경택
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.135-146
    • /
    • 1998
  • 대형 시스템의 건전성 평가를 위한 동적 재하시험에 있어서 변위를 측정하는 것보다 가속도를 측정하는 것이 수월하나 대부분의 공학적 기준은 응력과 비례관계를 지니는 변화를 기준으로 하고 있다. 본 연구에서는 시스템의 재하시험시 측정된 가속도신호를 이용하여 변위응답을 산정하는데 그 목적을 두고 적분을 위한 신호처리시 발생되는 문제점을 정상상태 및 천이영역에 대하여 규명하였다. 기존의 연구에서 고려하지 못하였던 초기조건의 항을 도입함으로써 시간영역의 적분과 주파수영역의 적분결과가 일치함을 해석적으로 입증하였으며 이동하중을 받는 보의 동적거동에 대하여 제시된 타당성을 검증하였다.

  • PDF

Minimum Weight Design of the Boom of an Ecavator (굴삭기 붐의 최적 설계)

  • 임오강;신양범;이병우
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • Minimum weight design of the boom of an excavator with stress and displacement constraints was performed. The procedure of analysis consists of the following steps. The finite element model of the boom was built up by using 227 triangular plate elements each of which has three nodes. And then the finite element program was implemented and its accuracy was verified by comparing its results with those of the commercial structural analysis package-ANSYS 4.4A. For the constraints of stresses and displacements, the design sensitivities of those were computed using direct differentiation method. To verify the reliability of them the results were compared with those of the finite difference method. The optimum design value was obtained by using PLBA(Pshenichny-Lim-Belegundu-Arora)non-linear optimization program which adopts the active set strategy. Using the above results, minimum weight design of an excavator boom showed an effect of 27% reduction in weight.

  • PDF

Analysis of Bending Wire Mesh (와이어메쉬 굴곡배치 타당성분석)

  • Kim, Chun-Ho;Jung, Dae-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.169-174
    • /
    • 2009
  • We conducted structural analysis to investigate disadvantage of wire-mesh arranged at the plane and to develop three-dimensionally bent U-type wire-mesh. In all case that distributed loading at the whole top slab and the half top slab, and the wire mesh was bent $45^{\circ}$, flexura tensile stress was the fewest in both positive moment and negative moment, and the wire mesh was bent $45^{\circ}$ in crossway the shear stresss was the fewest. Therefore, by arranging wire-mesh with $45^{\circ}$ more bent than plane, flexura tensile stress, shear stress, displacement will be reduced and structural function will be improved.

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

A Study on the Reinforcement Effects of Fully-Grouted Rock Bolts (전면접착형 록볼트의 보강효과에 관한 연구)

  • 정해성;문현구
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.194-203
    • /
    • 1999
  • The axial stress in rock bolt, the shear stress at the bolt-grout interface and the neutral point are analyzed to understand the mechanical behavior of rook bolt. To analyze the support effects of rock bolt in various geological conditions, numerical analyses are performed with regard to bolt spacing and bolt length in several geological conditions and tunnel sizes. Through the numerical analyses, the distributions of maximum tensile stress and shear stress are determined. And the excavation width of underground opening affects the position of the neutral point. In the circular opening supported by pattern bolting, the increase of confining pressure, the reduction of plastic zone, and that of ground displacement are determined by using the radial stress increase ratio, the plastic zone reduction ratio and the displacement reduction ratio respectively. The results of this study can be applied to a practical tunnel design through understanding of the trends of these support effects.

  • PDF