• Title/Summary/Keyword: 응력감소

Search Result 1,682, Processing Time 0.024 seconds

Stress-Strain Behavior of Flexible Pavement Reinforced with Geosynthetics (토목섬유로 보강된 아스팔트포장의 응력-변형 거동특성)

  • Ahn, Tae-Bong;Yang, Sung-Chul;Cho, Sam-Deok;Kim, Nam-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.151-163
    • /
    • 2001
  • Very few studies have been attempted to understand the stress-strain behavior of flexible pavements reinforced with geosynthetics in the middle of asphalt layer. In this study, the flexible asphalt layer was analyzed with finite element method to understand stress-strain behavior. The asphalt layer was reinforced with glass grid and geogrid. The reinforcement was applied in the asphalt layer to prevent its excessive deformation and shear failure. The location of installation and stiffness of the geosynthetics were varied to obtain optimum depth of reinforcement and proper modulus. The results indicate that geosynthetics are more effective for reducing maximum shear stress than those of vertical stress and vertical displacement. Maximum shear stress decreased 15$\sim$20%, and glass grid with high value of modulus was the most effective. Also, in order to prevent failure of asphalt layer, reinforcement should be installed in the 3cm$\sim$5cm depth.

  • PDF

Stress Analysis and Lead Pin Shape Design in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 응력해석 및 Lead Pin 형상설계)

  • Cho, Seung-Hyun;Choi, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2011
  • Research about the geometry design of lead pin was carried based on the normal or shear stress of the interface between a lead pin and a PCB in terms of delamination failure. The taguchi method with four design factors of three levels and FEA(Finite element Analysis) are carried under $20^{\circ}$ bending and 50 ${\mu}m$ tension of lead pin. The contact width, d2, between head round and copper pad in PCB is the highest affection factor among design factors by analysis of contribution analysis. Equivalent von Mises stress of 18.7% reduction design is obtained by the parameter design of the taguchi method. Maximum normal stress occurred at contact position between solder outer surface and a Cu pad in PCB. Also, maximum shear stress happened at contact position between solder outer surface and SR layer of PCB. From these calculated results, delamination of the PGA package may be occurred from outer interface of solder to inner interface of solder.

Stress Intensity Factor of Single Edge Cracked Plates Considering Materials and Geometry of Patch by p-Convergent Partial Layerwise Model (p-수렴 부분층별모델에 의한 일변균열판의 패치재료 및 기하형상에 따른 응력확대계수)

  • Ahn, Hyeon-Ji;Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • This study investigated that the stress reduction of single edge cracked plates with patch repairs according to different type of patching such as material, size and thickness of patch and adhesive as well as single sided or double sided patches. As a numerical tool, the p-convergent partial layerwise model has been employed. The proposed model is formulated by assuming piecewise linear variation of in-plane displacement and a constant value of out-of-plane displacements across thickness. The integrals of Legendre polynomials are chosen to define displacement fields and Gauss-Lobatto numerical integration is implemented in order to directly obtain maximum values occurred at the nodal points of each layer without other extrapolation techniques. Also, total strain energy release rate method is adopted to obtain stress intensity factors. Numerical examples are presented not only to demonstrate the stress reduction effect in terms of non-dimensional stress intensity factor and deflection with respect to different type of patch repairs, but also the accuracy of proposed model.

Fatigue Life Evaluation of Turbine Shaft Using Applied Shaft Stress (회전체 스트레스 정보를 이용한 터빈 축 피로수명 평가)

  • Jin, Byeong Kyou;Park, Ki Beom;Chai, JangBom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • The equipment or with a constant torque and a variable stress due to axial vibration such as the turbine-generator system in nuclear power plant show the fatigue fracture behavior. Thus this study whoul aim to measure the torsional stress and analyze the fatigue fracture behavior. To achieve this, we manufactured the equipment similar with turbine-generator system and applied various torsional vibration stress due to external load. In particular, the evaluation was conducted with the existing evaluation methods of the fatigue behavior of known stress-life, strain-life, crack growth assessment methods. With increasing the external load and independent methods tends to decrease the fatigue life was confirmed up to 10 times in 5 kV external load compared to without external load.

THREE-DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF PORCELAIN INLAY AND ONLAY (도재인레이 및 온레이에 대한 삼차원유한요소법적 응력분석)

  • Kwon, Hyuk-Choon;Um, Chung-Moon;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.2
    • /
    • pp.647-655
    • /
    • 1998
  • 심미도재수복시의 와동의 폭과 교두의 capping이 응력의 분포에 미치는 영향을 비교하기 위하여 연속사진 촬영술을 이용하여 상악제1소구치의 3차원 유한요소 모델을 제작하였다. 법랑질, 상아질, 도재 및 복합레진시멘트의 각각의 재질에 대한 물성치를 부여하고, 140N의 하중을 가하여 Super SAP 프로그램으로 해석하여 다음과 같은 결과를 얻었다. 1. 응력은 탄성계수값이 큰 법랑질과 도재를 따라 분포되고, 연질의 상아질에는 적게 발생된다. 2. 와동의 협측치수선각부위에서는 인레이모델의 경우에는 와동폭의 증가에 따른 응력의 증가는 관찰되지 않으나, 온레이모델에서는 응력의 증가가 관찰된다. 3. 온레이모델의 경우에는 근심협측교두를 피개하고 있는 도재부위에 최대주응력이 크게 나타나고, 치은변연부의 도재에서는 교두를 피개하지 않은 인레이모델의 해당되는 법랑질에 비해 응력이 1/2정도로 감소된다. 4. 하중이 증가되면 잔존치질의 파절은 근심와동의 협측치은선각부위에서 협측보다는 치은을 향해 경사지게 일어날 것이다. 5. 교두를 피개하면 교두피개부위에서의 도재의 파절가능성은 증가되고, 치은변연에서는 도재와 하부의 치질의 파절가능성은 감소된다. 6. 도재를 이용하여 교두를 피개할 경우에는 응력을 견딜 수 있는 도재의 두께를 부여할 수 있도록 교두를 충분히 삭제하여야 하고, 충분한 강도를 갖는 도재를 선택하여야 한다.

  • PDF

Finite Element Analysis of Stress Distribution on Supporting Bone of Cement Retained Implant by Oblique Loading (경사하중에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분포)

  • Lee, Myung-Kon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.343-349
    • /
    • 2014
  • The dental osseointegration implant should be enough to endure occlusion load and it's required to have efficient design and use of implant to disperse the stress into bones properly. Solidworks as a finite element analysis program for modeling and analysis of stress distribution was used for the research. The simple crown model was designed on applying conjoined condition with tightening torque of 20 Ncm of a abutment screw between a cement retained implant abutment and a fixture. A $45^{\circ}$ oblique loading from lingual to buccal side on buccal cusps of crown and performed finite element analysis by 100 N of external load. The results by a analysis for stress distribution of supporting bones of fixture were as below. The von Mises stress was concentrated on the upper side of supporting compact bone regardless of the diameters and lengths of fixture, and the efficiency result of stress reduction was increase of fixture's diameter than it's length. Therefore, it's effective to use wider fixture as possible to the conditions of supporting jaw bone.

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete (초고성능 콘크리트 프리텐션부재의 응력전달길이)

  • Kim, Jee-Sang;Choi, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • The prestressing force introduced to the tendon in pretensioned concrete members is transferred by direct bond between tendon and concrete, which requires a proper estimation of stress transfer length. The use of pretensiond and/or precast members with UHPC (Ultra High Performance Concrete) may give many advantages in quality control. This paper presents an experiment to estimate the stress transfer length of UHPC for various compressive strength levels of UHPC, cover depths, diameters of tendons and tensioning forces. According to the result of this experiment, the stress transfer length of UHPC member is much reduced comparing that of normal strength concrete. The reduction in stress transfer length of UHPC may come from the high bond strength capacity of UHPC. The transfer lengths obtained from this experiment are compared to those in current design code and a new formula is proposed.

Numerical Analysis of Stress Regimes in and around Inactive and Active Fault Zones (비활성 그리고 활성 단층지역 내부와 주변에서의 응력장에 대한 수치적 분석)

  • Jeong, Woo-Chang;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.117-125
    • /
    • 2001
  • This paper presented the analysis of stress regimes in and around inactive and active fault zones. The stress regime in the vicinity of an existing inactive fault zone is dependent on the orientation of the fault with respect to the current stress field and the contrast between the elastic properties of the faulted rock and those of the surrounding rock. In the analysis of stress regimes around an active fault zone, if the yielding stress is exceeded during loading, the localized shearing in a fault zone will result in weakness with mean stresses in the fault becoming lower than those in the surrounding rock. It can be expected that such stress gradients will induce fluid flow towards the faults zone.

  • PDF

Photoelastic analysis of the Stress distribution on an intervertebral disc (추간판 응력분포에 대한 광탄성 해석)

  • Shin, Hyun-Kug;Lee, Jae-Chang;Ahn, Myun-Whan;Ahn, Jong-Chul;Ihn, Joo-Chul
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.223-239
    • /
    • 1989
  • To observe the change in the status of stresses according to three different postural angulation of an intervertebral disc with or without nucleus pulposus, 6 specimens of a 3-dimensional photoelastic model of the s pine were made of epoxy. The nucleus pulposus portion was replaced with silicon in three models, and the three were made without silicon. Through axial application of a vertical compressive load of 8kg, the peculiar patterns of the isochromatic fringes were observed. Stresses on the intervertebral disc were analyzed according to three different postural angulations of the intervertebral disc with the nucleus pulposus and without the nucleus pulposus. The results of these study are as follow : 1. In an erect neutral posture with the nucleus pulposus, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Also, the high stress was concentrated at the medial and central portion. In an erect neutral posture without the nucleus pulposus, the stress concentration was much increased at the anterior portion rather than at the posterior portion and the stress distribution seemed to be locally concentrated. 2. In a maximal flexed posture, the stress concentration was much increased at the posterior portion rather than at the anterior portion. Comparing the presence of the nucleus pulposus with the absence of the nucleus pulposus, the stress concentration was lower at the anterior portion in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. However, the stress distribution at the posterior portion was nearly same in the two groups. According to the analysis of the stress distribution diagram, as a whole, the stress pattern around the disc was evenly distributed. 3. In a maximal extended posture, the higher concentration of the stress distribution at the anterior and medial portion rather than in the posterior and lateral portion was observed. The stress concentration was higher in the presence of the nucleus pulposus than in the absence of the nucleus pulposus. 4. Comparing the maximal flexed posture with the erect neutral posture, the stress concentration in the flexed posture was much decreased in the posterior portion rather than in the erect neutral posture, and an even distribution of the stress pattern in the flexed posture was observed. 5. In the presence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the flexed posture was much decreased compared with the extended posture. In the absence of the nucleus pulposus, at the anterior and posterior portion, the stress concentration in the extended posture was much decreased compared with the flexed posture.

  • PDF