• Title/Summary/Keyword: 음향 탐지

Search Result 370, Processing Time 0.025 seconds

Tonal Signal Detection for Acoustic Targets using ASM Neural Network (ASM 신경망을 이용한 음향 표적의 토날 신호 탐지)

  • 이성은
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.22-28
    • /
    • 1996
  • 수동 소나 시스템에서 표적을 탐지, 식별하는데 가장 중요한 인자는 표적에서 발생되는 토날 신호 성분이다. 수중의 주변잡음과 표적소음이 복합된 환경하에서 표적의 토날 신호성분을 정확히 추출하는데는 신호 탐지 준위 설정이나 주변 잡음의 변화에 의해 어려움이 있다. 본 논문에서는 ASM 신경망을 이용하여 신호 탐지 준위 설정이나 주변잡음의 변화에 강인한 음향 표적의 토날 신호 탐지 방식을 제안한다. 모의 시뮬레이션 및 실제 표적 신호에 적용하여 우수한 토날 신호 탐지 성능을 보인다.

  • PDF

Estimation of underwater acoustic uncertainty based on the ocean experimental data measured in the East Sea and its application to predict sonar detection probability (동해 해역에서 측정된 해상실험 데이터 기반의 수중음향 불확정성 추정 및 소나 탐지확률 예측)

  • Dae Hyeok Lee;Wonjun Yang;Ji Seop Kim;Hoseok Sul;Jee Woong Choi;Su-Uk Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.285-292
    • /
    • 2024
  • When calculating sonar detection probability, underwater acoustic uncertainty is assumed to be normal distributed with a standard deviation of 8 dB to 9 dB. However, due to the variability in experimental areas and ocean environmental conditions, predicting detection performance requires accounting for underwater acoustic uncertainty based on ocean experimental data. In this study, underwater acoustic uncertainty was determined using measured mid-frequency (2.3 kHz, 3 kHz) noise level and transmission loss data collected in the shallow water of the East Sea. After calculating the predictable probability of detection reflecting underwater acoustic uncertainty based on ocean experimental data, we compared it with the conventional detection probability results, as well as the predictable probability of detection results considering the uncertainty of the Rayleigh distribution and a negatively skewed distribution. As a result, we confirmed that differences in the detection area occur depending on each underwater acoustic uncertainty.

Application of Submarine Stealth for Non-acoustic Detecting (비음향 탐지억제를 위한 잠수함의 스텔스 적용)

  • Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.263-265
    • /
    • 2012
  • 잠수함이 가장 취약한 시기는 잠수함이 스노클이나 잠망경 운용을 위하여 잠망경 심도로 항해할 경우이며, 이때에는 비음향 탐지센서인 레이더와 광학, 사람에 의한 시각에 탐지될 확률이 매우 높다. 따라서 본 논문에서는 이러한 상황에서 탐지되는 취약성을 극복하고자 잠수함 마스트 및 잠망경 부분에 비음향 스텔스를 적용하고자 한다. 먼저 비음향 탐지센서에 대해서 조사하고, 그에 따른 스텔스 기법을 분야별 분석하여 최적화한 결과 다층형 구조로 선체표면부터 RAM layer, IR layer, Camouflage layer 구조로 각각 RAM layer는 자성재료인 페라이트계열로 3~5mm, IR layer는 Ceramic 또는 Nickel 계열로 1~2mm, Camouflage layer는 군청색 계열 페인팅을 제시하였다.

  • PDF

Sound Source Localization Using Matched Filter Array Processing (정합필터배열처리를 이용한 소음원 탐지)

  • 윤종락
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.84-87
    • /
    • 1998
  • 소음원 탐지는 환경 소음제어, 음향 표적 탐지 및 음성 통신 등의 광범한 분야에 적용되는 연구분야로 Beamforming 기술, 상관함수법, 음향인테시티법등 다양한 기술이 적용되는 분야이다. 본 연구에서는 최근 그 응용 범위가 증대고고 있는 Matched Filterig 기술을 이용한 소음원 탐지기술의 수치 해석 결과로 종래 연구가 현상적인 특성의 1차적 응용이라면 본 연구는Matched filtering 의 공간 분해능 특성을 해석한 것으로 배열 중심선과 소음원이 이루는 경사각에 따른 분해능 특성을 중심으로 논의되었다.

  • PDF

A preliminary study on the development of detection techniques for CO2 gas bubble plumes (CO2 가스 기포 누출 탐지 기술 개발을 위한 예비 연구)

  • Kum, Byung-Cheol;Cho, Jin Hyung;Shin, Dong-Hyeok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1163-1169
    • /
    • 2014
  • As a preliminary study for detection techniques of $CO_2$ gas bubble plumes, we have conducted a comparative experiment on artificially generated $CO_2$ gas bubbles plume by using multibeam echosounder (MBES), single beam echosounder (SBES), and sub-bottom profiler (SBP). The rising speed of artificial gas bubbles is higher than references because of compulsory release of compressed gas in the tank. Compared to single beam acoustic equipments, the MBES detects wide swath coverage. It provides exact determination of the source position and 3D information on the gas bubble plumes in the water column. Therefore, it is shown that MBES can distinctly detect gas bubble plumes compared to single beam acoustic equipments. We can establish more effective complementary detection technique by simultaneous operation of MBES and SBES. Consequently, it contributes to improve qualitative and quantitative detection techniques by understanding the acoustic characteristics of the specific gas bubbles.

Underwater Acoustic Barrier with Passive Ocean Time Reversal and Application to Underwater Detection (수동형 해양 시역전 수중음향장벽과 수중탐지에의 응용)

  • Shin, Keecheol;Kim, Jeasoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.8
    • /
    • pp.551-560
    • /
    • 2012
  • Target detection by acoustic barrier method includes active and passive sonar technique and time reversal process whose theoretical background is already well defined. In this paper, the concept and theory of underwater detection by passive ocean time reversal is established. Also, the reason that this study was conducted was to investigate feasibility of complex mathematical modeling to provide some predictive capability for underwater acoustic barrier with passive time reversal. It may eventually lead to a useful predictive tool when designing underwater acoustic barrier detection system using the passive time reversal concept.

A Study on Submarine Stealth (잠수함 스텔스에 관한 연구)

  • Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.716-718
    • /
    • 2011
  • 첨단 과학기술의 발달에 따라 미래 해전의 양상은 비대칭적인 전략과 수단이 보편화되는 양상으로 전개될 것으로 전망되며, 비대칭전력의 핵심인 잠수함의 중요성이 대두 될 것으로 판단된다. 따라서 본 논문에서는 중요성이 대두되는 잠수함 측면에서 잠수함을 탐지하는 대잠전 탐지체계를 분석한 결과 소나체계인 음향탐지체계와 전자파, 자기, 광학장비 등으로 탐지하는 비음향탐지체계로 구분되며 각각의 탐지체계로부터 탐지를 거부하고 생존력을 증대시키기 위해 필요한 잠수함의 스텔스 발전 방향을 제시하였다.

  • PDF

A Study on the Detection Range of Acoustic Instruments for Fisheries (수산음향계측장치의 탐지범위에 대한 연구)

  • Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.54-63
    • /
    • 2005
  • Detection ranges of acoustic instruments mainly used for fisheries and their research are derived as the range bordered by a certain signal-to-noise ration (SNR) thershold. The SNR is depicted by several factors on transmitting and receiving, sound propagation, scattering by objects, and mainly self-ship noise. The detection ranges are shown for several fisheries instrument, such as echo sounder, quantiative echo sounder, and bio-telemetry system. The results can be used for designing the instruments, examining the capability of user's own instruments, and interpreting obtained data or echograms. Increasing transmitting power is not as effective for high frequencies as for low frequencies to increase the detection range. Comparison of volume backscattering strengths obtained by the quantitative echo sounder at several frequencies should be done within the same detection range. By applying the concept of the detection range for the bio-telemetry receiver beams, the number of the beams and the beamwidths can be determined.

A General Acoustic Drone Detection Using Noise Reduction Preprocessing (환경 소음 제거를 통한 범용적인 드론 음향 탐지 구현)

  • Kang, Hae Young;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.881-890
    • /
    • 2022
  • As individual and group users actively use drones, the risks (Intrusion, Information leakage, and Sircraft crashes and so on) in no-fly zones are also increasing. Therefore, it is necessary to build a system that can detect drones intruding into the no-fly zone. General acoustic drone detection researches do not derive location-independent performance by directly learning drone sound including environmental noise in a deep learning model to overcome environmental noise. In this paper, we propose a drone detection system that collects sounds including environmental noise, and detects drones by removing noise from target sound. After removing environmental noise from the collected sound, the proposed system predicts the drone sound using Mel spectrogram and CNN deep learning. As a result, It is confirmed that the drone detection performance, which was weak due to unstudied environmental noises, can be improved by more than 7%.

A Study on Non-acoustic Stealth Techniques of Submarine (잠수함의 비음향 스텔스 기법에 관한 연구)

  • Choi, Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1330-1334
    • /
    • 2012
  • The submarines reach their weakest point when they sail on the surface to operate snorkel and periscope. At this period, however, there lies a high possibility that the submarines are detected by non-acoustic sensors such as radars, IR signatures, and human observations. In this paper, the non-acoustic stealth was adopted on the mast and periscope of submarines so as to overcome their vulnerability of being easily detected in this given situation. First of all, the non-acoustic detection sensors were investigated and the stealth methods were analyzed. And multi-layered structures consisting of RAM layer, IR layer, and Camouflage layer were proposed on the surface of the submarine. As a results, multi-layered structure was suggested with 3~5 mm of a magnetic material such as ferrite for RAM layer, 1~2 mm of ceramic or nickel for IR layer, and sea-blue paint for Camouflage layer.