DOI QR코드

DOI QR Code

A preliminary study on the development of detection techniques for CO2 gas bubble plumes

CO2 가스 기포 누출 탐지 기술 개발을 위한 예비 연구

  • Kum, Byung-Cheol (Maritime Security Research Center, Korea Institute of Ocean Science & Technology) ;
  • Cho, Jin Hyung (Maritime Security Research Center, Korea Institute of Ocean Science & Technology) ;
  • Shin, Dong-Hyeok (Maritime Security Research Center, Korea Institute of Ocean Science & Technology)
  • Received : 2014.09.25
  • Accepted : 2014.11.07
  • Published : 2014.11.30

Abstract

As a preliminary study for detection techniques of $CO_2$ gas bubble plumes, we have conducted a comparative experiment on artificially generated $CO_2$ gas bubbles plume by using multibeam echosounder (MBES), single beam echosounder (SBES), and sub-bottom profiler (SBP). The rising speed of artificial gas bubbles is higher than references because of compulsory release of compressed gas in the tank. Compared to single beam acoustic equipments, the MBES detects wide swath coverage. It provides exact determination of the source position and 3D information on the gas bubble plumes in the water column. Therefore, it is shown that MBES can distinctly detect gas bubble plumes compared to single beam acoustic equipments. We can establish more effective complementary detection technique by simultaneous operation of MBES and SBES. Consequently, it contributes to improve qualitative and quantitative detection techniques by understanding the acoustic characteristics of the specific gas bubbles.

$CO_2$ 가스 기포 탐지 기술 개발을 위한 예비연구로 인위적으로 발생시킨 수층의 $CO_2$ 가스 기포 플룸을 다중빔음향측심기, 단일빔음향측심기 그리고 천부지층탐사기(SBP)를 이용해서 탐지 비교하였다. 인위적으로 발생시킨 기포의 상승속도는 가스 탱크에서 압축된 가스의 강제적인 누출이 영향을 미쳐 기존 자료보다 높게 나타나는 것으로 판단된다. 다중빔음향측심기는 단일빔 음향장비에 비하여 넓은 범위를 탐지할 수 있고 가스 누출 위치 및 수층에서 가스 플룸의 3차원적인 정보를 제공하고 있다. 따라서 다중빔음향측심기는 단일빔의 음향장비 보다 더 뚜렷한 가스 플룸을 탐지할 수 있으나, 상호보완적으로 동시에 운영하면 보다 효과적인 탐지기술을 확립할 수 있다. 향후, 본 연구는 특정가스의 음향학적 특징을 파악하여 정량적, 정성적 탐지 기술 향상에 기여하고자 한다.

Keywords

References

  1. B. S. McCartney and B. M. Bary, "Echo-sounding on probable gas bubbles from the bottom of Saanich inlet, British Columbia," Deep-Sea Research, vol. 12, no. 3, pp. 285-294, 1965.
  2. R. Merewether, M. S. Olsson, and P. Lonsdale, "Acoustically detected hydrocarbon plumes rising from 2-km depths in guaymas basin, gulf of california," Journal of Geophysical Research, vol. 90, no. B4, pp. 3075-3085, 1985. https://doi.org/10.1029/JB090iB04p03075
  3. L. Mayer, Y. Li, and G. D. Melvin, "3-D visualization for pelagic fisheries research and assessment," International Council for the Exploration of the Sea Journal of Marine Science, vol. 59, pp. 216-225, 2002.
  4. M. L. Wolfson, D. F. Naar, P. A. Howd, S. D. Locker, B. T. Donahue, D. T. Friedrichs, A. C. Trembansi, M. D. Richardson, and T. F. Wever, "Multibeam observations of mine burial near clearwater, FL, including comparisons to predictions of wave-induced burial," IEEE Journal of Oceanic Engineering, vol. 32, no. 1, pp. 103-118, 2007. https://doi.org/10.1109/JOE.2006.889317
  5. L. Naudts, J. Greinert, Y. Artemov, P. Staelens, J. Poort, P. van Rensbergen, and M. de Batist, "Geological and morphological setting of 2778 methane seeps in the Dnepr paleodelta, norhtwestern Black Sea," Marine Geology, vol. 227, pp. 179, 2006.
  6. J. Greinert, Y. G. Artemov, V. Egorov, M. de Batist, and M. McGinnis, "1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea; Hydroacoustic characteristics and temporal variability," Earth and Planetary Science Letter, vol. 244, no. 1-2, pp. 1-15, 2006. https://doi.org/10.1016/j.epsl.2006.02.011
  7. F. Gerlotto, S. Georgakarakos, and P. K. Eriksen, "The application of multibeam sonar technology for quantitative estimates of fish density in shallow water acoustic surveys," Aquatic Living Resources, vol. 13, pp. 386-5393, 1994.
  8. A. G. Judd and M. Hovland, Seabed Fluid Flow, Cambridge University Press, 2007.
  9. J. H. Kim et al., Study of Technology for Accumulation and Characterization of Submarine Shallow Gas, GP2009-017-2011(3), Petroleum & Research Division, Korea Institute of Geoscience And Mineral Resources, 2011 (in Korean).
  10. K. A. Kvenvolden and B. Gogers, "Gaia's breath-global methane exhalations," Marine and Petroleum Geology, vol. 22, pp. 579-590, 2005. https://doi.org/10.1016/j.marpetgeo.2004.08.004
  11. S. G. Kang and C. Huh, "The latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its application in Republic of Korea," Journal of the Korea Society for Marine Environmental Engineering, vol. 11, no. 1, pp. 24-34, 2008 (in Korean).
  12. C. M. Oldenburg and J. L. Lewicki, "On leakage and seepage of $CO_2$ from geologic storage sites into surface water," Environmental Geology, vol. 50, pp. 691-705, 2006. https://doi.org/10.1007/s00254-006-0242-0
  13. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography, Academic Press, Boston, 1998.
  14. Kongsberg Maritime, EA 400 Operator Manual, 2006
  15. Kongsberg Maritime, EA 400 Instruction Manual, 2006
  16. Teledyne Benthos, Datasonics CAP-660 II Acoustic Profiling System Manual, 1997.
  17. Kongsberg Maritime, EM 3002 Instruction Manual, 2004.
  18. QPS, Fledermaus Reference Manual, 2011.
  19. I. Leifer and J. Boles, "Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment," Marine and Petroleum Geology, vol. 210, pp. 411-424, 2003.
  20. H. Sahling, G. Bohrmann, Y. G. Artemov, A. Bahr, M. Bruning, S. Klapp, I. Klaucke, E. Kozlova, A. Nikolovska, T. Pape, A. Reitz, and K. Wallmann, "Vodyanitskii mud volcano, sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams," Marine and Petroleum Geology, vol. 26, no. 9, pp. 1799-1811, 2009. https://doi.org/10.1016/j.marpetgeo.2009.01.010
  21. J. Schneider von Deimling, and C. Papenberg, "Technical note: Detection of gas bubble leakage via correlation of water column multibeam images," Ocean Science, vol. 8, pp. 175-181, 2012. https://doi.org/10.5194/os-8-175-2012
  22. R. Clift, J. R. Grace, and M. E. Weber, Bubbles, Drops, Particles, New York, Academic Press, 1978.
  23. I. Leifer, B. P. Luyendyk, J. Boles, and J. F. Clark, "Natural marine seepage blowout: gontribution to atmospheric methane," Global Biogeochemical Cycles, vol. 20, no. 3, pp. 1-9, 2006.
  24. J. Schneider von Deimling, J. Brockhoff, and J. Greinert, "Flare imaging with multibeam system: Data processing for bubble detection at seeps," Geochemistry Geophysics Geosystems, vol. 8, no. 6, Q06004, doi:10.1029/2007GC001577, 2007.

Cited by

  1. An experiment revealing the ability of a side‐scan sonar to detect CO2bubbles in shallow seas vol.10, pp.3, 2014, https://doi.org/10.1002/ghg.1991