• Title/Summary/Keyword: 음향파 응답

Search Result 49, Processing Time 0.026 seconds

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

Finite Element Analysis for Acoustic Characteristics of Piezoelectric Underwater Acoustic Sensors (압전 수중음향센서 음향특성의 유한요소해석)

  • 김재환;손선봉;조철희;조치영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • Sonar is the system that detects objects and finds their location in water by using the echo ranging technique. In order to have excellent performance in variable environment, acoustic characteristics of this system must be analyzed accurately. In this paper, based on the finite element analysis, modeling and analysis of acoustic characteristics of underwater acoustic sensors are preformed. Couplings between piezoelectric and elastic materials, and fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Eave Envelop Element) is adopted to take into account the infinite domain. When an incidence wave excites the surface of Tonpilz underwater acoustic sensor, the scattered wave on the sensor is founded by satisfying the radiation condition at the artificial boundary approximately. Based on this scattering analysis, the electrical response of the underwater acoustic sensor under incidence, so called RVS (Receiving Voltage Signal) is founded accurately. This will devote to design Sonar systems accurately.

  • PDF

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

Correlation Between the Headphone's Acoustical Characteristics and Subjective Preferences (헤드폰의 음향적 특성과 주관적 선호도간의 상관 관계)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.96-106
    • /
    • 2009
  • In this paper, correlation between the headphone's acoustical characteristics and the subjective preferences is analyzed, and a possibility of predicting the subjective preferences using the acoustical characteristics is investigated, The headphone's acoustical characteristics include the total harmonic distortions, the variation of the frequency response which were measured by separate channel and the inter-aural correlation coefficients, Those characteristics were measured in a noise-free anechoic chamber, using a head and torso simulator, The subjective preferences were scored in terms of loudness, clearness, spaciousness, fullness and overall impression, In the subjective listening test, 12 subjects were participated who have plentiful listening experiences, The programs include 5 kinds of musics; korean popular song, pop song, light music, male-voice and classic, The 8 models of the headphones were employed, including 4 closed-type circumaural headphones, 2 open-type supraaural headphones and 2 intra-concha headphones, A significant test was carred on the results from the subjective test, using a two-way ANOVA test, The correlation coefficients between the acoustical parameters and the subjective preferences were computed, Experimental results showed that the variation of the magnitude of frequency response measured from a right channel revealed higher correlation with the subjective preferences. Whereas the inter-aural correlation coefficients have very low correlation coefficients.

Sound transmission loss through finite single partitions: the relative contribution of resonant transmission component (유한한 단판의 차음 성능: 공진 투과 성분의 상대적 기여도)

  • Lee Jong-Hwa;Ih Jeong-Guon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.207-210
    • /
    • 2004
  • 단판의 차음 성능 해석에 있어서 무한판과 유한판의 가장 큰 음향학적 차이는 유한한 경계에 의해 발생하는 정재파에 있다고 할 수 있다. 하지만, 일치 주파수 이하에서는 진동 공진이 발생하더라도 음향방사효율이 비교적 작고, 따라서, 비록 그 진동 응답이 크더라도 절대적인 음향 방사 양은 작다. 이를 근거로 대부분의 유한판 해석은 비공진 성분에 국한되어 왔으나, 특정 경우 공진 투과 성분을 무시하면 해석 결과에 오차가 발생할 수 있음이 제시된 바 있다. 본 연구에서는 유한 단판의 차음 해석에 있어서 공진 투과 성분의 상대적 기여도를 수치적 해석을 통해 알아보고, 이로부터 공진 투과 성분이 해석치와 측정치 사이의 정량적 상관도에 미치는 영향을 분석하였다.

  • PDF

A Study on the Compensating System for the Acoustic Characteristics Caused by the Variation of Distance from Sound Source to Microphone (음원과 마이크로폰 사이의 거리변화에 의한 음향 특성 보정에 관한 연구)

  • Jeoung, Byung-Chul;Choe, Yoon-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.197-204
    • /
    • 2012
  • In this thesis, studied the method to minimize the changes in frequency response and level due to the variation of the distance from the source to the microphone. selecting three microphones (omni directional, cardioid, super cardioid) which are being used generally, frequency responses were measured in accordance with the distance changes. Gotten the difference from the reference as the result of measurement, changed responses for each frequency range were compensated in comparison of the original human vocal source. In low frequency range, the low frequency boost caused by the proximity effect and decrease in accordance with the distance were compensated. The variation in mid-frequency range is comparatively small, however since the mid-range is the most important part of the human vocal signal, were compensated the mid-frequency range in comparison of the reference. The human vocal signal variation in high frequency range is extremely small and the high frequency is compensated close to the original source without difficulty. Understanding the microphone characteristics and compensations, this study showed that the response can be maintain among the change of the distance from the source to the microphone.

Single Frequency Analysis of Flexural Vibration of Thin Plate by Using the Ray Tracing Method (레이추적기법을 이용한 평판 횡진동의 단일주파수 해석)

  • Chae Ki-Sang;Ih Jeong-Guon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.267-270
    • /
    • 2000
  • 강제가진을 받는 진동장은 직접장과 반사장으로 이루어진다. 직접장은 무한구조요소가 점입력을 받을 때의 해와 같으며, 반사장은 직접장에 의해 발생되는 1차 반사파 및 추가로 발생하는 무수한 반사파들의 합으로 나타낼 수 있다. 본 논문에서는 점가진을 받는 유한한 평판의 단일 주파수 해석을 수행하기 위한 레이추적기법을 연구하였다. 이를 위해, 직접장은 고주파수 가정을 이용하여 원형전달파로 근사화하고. 이 원헝전달파를 다수의 파동관 (wave tube)으로 이산화하였다. 균일한 경계조건과 무시할 만큼의 미약한 굴절효과를 가정하고 경계에서의 정반사 (specular reflection)만을 고려하여, 경계에서의 입사파동관. 전달 및 반사파동관의 기하학적 관계를 제안하였다. 이들 파동관이 평판 내부를 진행하면서 관측점에 미치는 영향들을 합성하여 비교적 정확한 강제진동응답을 얻을 수 있음을 단일 평판의 예제를 통하여 확인할 수 있었다 그러나, 연성된 평판의 경우에는 다소 부정확한 결과를 얻었다.

  • PDF