• Title/Summary/Keyword: 음향인텐시티

Search Result 84, Processing Time 0.029 seconds

The Estimation of Sound Attenuation Caused by Duct Silencer Using Sound Intensity Method (음향인텐시티법을 이용한 공조 덕트소음기의 감음성능평가방법에 관한 연구)

  • Kim, Seok-Hong;Son, Jang-Yeol;O, Jae-Eung;Kim, Yeo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.54-61
    • /
    • 1987
  • This paper is to suggest the test method of sound attenuation caused by absorptive duct silencer using sound intensity method in field. In order to estimate sound attenuation, sound power being radiated from sound power source and duct exhaust terminal was measured by the sound pressure method and sound intensity method in semianechoic and common room. The results of the measured sound attenuation values by sound intensity method are more similar to those of theoretical calculation than those by the sound pressure method. In addition, sound intensity method is much less influenced by sound field condition or continuous background noise than the sound pressure method.

  • PDF

Study on the Vibration Intensity in a Beam (보에 있어서 진동인텐시티에 관한 연구)

  • Kim, Young-Wan;Park, Byeong-Jeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.36-42
    • /
    • 1997
  • This paper purposes the measurement method of vibration intensity in building structure which is a method of measuring the intensity and the flow of vibration energy. We derived basic theory and measuring theory for a simple beam, and comparison of the experimental results with calculated results. As a result, according to the calculated value from acceleration distribution and the measurement result from the method of vibration intensity under the condition except near field of measurement zone. The measured results, show that this method is useful for measuring the vibration energy flow in building structure.

  • PDF

Analysis of Sound Attenuation Chambers in Duct System by the Finite Element Method (유한요소법에 의한 소음챔버의 감음특성 해석)

  • ;Hideki Tachibana
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.2E
    • /
    • pp.88-95
    • /
    • 1993
  • 공조덕트계에 소음 챔버를 설치하여 발생되는 음향투과손실을 유한요소법에 의하여 산출하는 방법을 검토하였다. 여기서는 음장내의 네트음향인텐시티를 입사파와 반사파의 인텐시티로 분리하므로서 투과손실의 산출을 가능하게 하였다. 산출방법의 타당성을 검증하기 위하여 형상과 내부흡음조건이 다른 소음챔버를 대상으로 수치해석과 모형실험을 실시한 결과, 양자는 잘 일치하였다.

  • PDF

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

Measurement of Near Field Sound Intensity and Loss Factor Using Plate Intensity Measurement (평판 인텐시티 측정을 통한 근접장 음향 인텐시티와 손실 계수 측정법)

  • 김용조;김양한
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.589-596
    • /
    • 1997
  • A energy equation for a thin plate and surrounding fluid is derived. The equation essentially determines the relation between internal loss of thin plate, energy of acoustic radiation, and structure intensity. We attempted to use this relation to measure internal loss of thin plate. The significance of this approach is that internal loss at any point of a thin plate can be measured. The quality of this measure is dicated by the accuracy of associated measurement systems such as structure and acoustic intensity measurements. A strain gauge bridge system has been developed to measure structure intensity of thin plate. Its performance is tested by experiments.

  • PDF

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

Numerical analysis for nearfield measurement error in a three-dimensional intensity probe. (3차원 인텐시티 프로브의 근거리 음장 측정에서의 오차 수치해석)

  • Kim, Suk-Jae;Jee, Suk-Kun;Suzuki, Hideo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.41-50
    • /
    • 1994
  • We studied an inherent error be caused by a measuring acoustic intensity using probe which can measure simultaneously the three-dimensional acoustic intensity. This three-dimensional intensity probe was constructed with four microphones, proposed by Suzuki et al. . In the computer simulation, we analyzed the nearfield measurement error with arbitary direction and each of axis direction on the ideal point source and the plate sound source which have finite size. From the results, in case of point source, we obtained accurate measurement below about 1dB when the distance of measurement was about 2.5 times with the distance among microphones in this probe. And in the case of plate sound source, the nearfield measurement error was decreased as the length of one side became above 0.02m, we obtained accurate measurement below about 1dB when the length of one side is 0.2m. The nearfield measurement error of finite size sound is small to ignore. Therefore this probe is useful to measure nearfield intensity.

  • PDF

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

Wave Analysis of Forced In-Plane Vibration of Plates (탄성파를 이용한 평판의 강제 내면전동 해석)

  • Kil Hyun-Gwon;Choi Jae-Sung;Hong Suk-Yoon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.297-302
    • /
    • 1999
  • 평판의 일반적인 형태의 진동을 해석하기 위해서는, 외면진동뿐만이 아니라 내면진동을 해석하여야 한다. 평판 내면진동의 경우 탄성파인 종파와 전단파의 전파에 의한 영향으로 발생하며, 진동 변위, 진동 에너지, 진동 인텐시티 등의 특성들을 이해하기 위해서는 각 파동의 영향을 분리하여 낼 필요가 있다. 내면진동을 해석하기 위하여 진동 모드법을 사용할 수 있으나, 각 파동에 의한 영향을 분리하여 낼 수가 없다. 본 논문에서는 진동장을 탄성파들에 의한 영향의 합으로 나타냄으로써, 각 파동에 의한 진동 변위, 진동 에너지, 진동 인텐시티 둥의 영향들을 분리할 수 있는 해석 방법을 제안하고자 한다. 이러한 해석 방법을 이용하여 점가진력에 의하여 강제 진동하는 평판의 내면 진동장에 대한 수치 계산을 수행하였다. 결과로써 진동 변위, 진동 에너지, 진동 인텐시티 등을 이루는 탄성파들의 기여도와 특성들을 분석함으로써 본 해석기법의 유용성을 보였다.

  • PDF

Identification of Noise Source of the HVAC Using Complex Acoustic Intensity Method (복소음향인텐시티법을 이용한 HVAC의 소음원 검출)

  • Yang, Jeong-Jik;Lee, Dong-Ju
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1089-1096
    • /
    • 2010
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise measurement and noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. As an industrial application, the complex acoustic intensity method is applied to HVAC to identify sound radiation characteristics in the near field. Experimental complex acoustic intensity method was applied to HVAC, it is possible to identify noise sources in complicated sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. Especially, it can be seen that complex acoustic intensity method using both of active and reactive intensity is vital in devising a strategy for identification of noise. Also, the vector flow of acoustic intensity was investigated to identify sound intensity distributions and energy flow in the near field of HVAC.