• Title/Summary/Keyword: 음향산란

Search Result 235, Processing Time 0.022 seconds

High Frequency Reverberation Characteristics in Shallow Water (천해 해역에서 측정한 고주파 해저면 복반사음 특성)

  • 박정수
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.189.2-203
    • /
    • 1992
  • 복반사음은 능동소나의 운용이나 수중음향 원격탐사를 위한 기초자료로 이용된다. 여름철(9월) 천해 해역에서 실시한 고주파 음향실험 자료를 바탕으로 몇가지 복반사음 변화 특성들을 사펴보고 그 원인을 규명하고자 하였다. 실험기간중 복반사음은 거의 해저면에 의한 복반사음으로 분석되었으며, 이로부터 해저면 후방산란강도를 계산하였다.

  • PDF

A Study of Two-Dimensional Intervalley Scattering Rate in HEMT Device (HEMT 소자내 계곡간 산란율의 2차원적 해석에 관한 연구)

  • Lee Jun-Ha;Lee Hoong-Joo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.162-164
    • /
    • 2004
  • 슈뢰딩거와 포아송 방정식의 연계풀이에 의해 수치해석적으로 구한 파동함수와 에너지 준위를 이용하여 $300^{\circ}$K에서 사각우물을 형성하는 $Al_xGa_{1-x}As/Ga_yIn_{l-y}As/GaAs$ HEMT 소자 채널 영역에서의 극성광학 포논, 음향 포논, 압전 산란, 이은화된 불순물 산란, 그리고 합금 산란에 대한 2차원 산란율을 계산하여, 같은 영역에서의 3차원 산란율과 비교하였다. 그 결과 bulk영역에서 가장 우세한 이온화된 불순물 산란이, 2-DEG 시스템에서 크게 감소되었음을 알 수 있었는데, 이는 변조 도핑에 의하여 이온화된 불순물을 2-DEG가 존재하는 채널영역의 불순물 양을 감소시켰기 때문으로 해석된다.

  • PDF

Analysis of Low-frequency Reverberation Inshallow Water (천해에서의 저주파 잔향음 분석)

  • 박길선;나정열;최지웅;오선택;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.94-100
    • /
    • 2001
  • In October 1997, low-frequency reverberation was measured at an experimental site off the west coast of the Jeju island using the explosive charge, Signals Underwater Sound (SUS). Received signals were separated into the noise, the reflection, and the scattering region, and then were analyzed for the spectral and statistical characteristics of each region. In the analysis of the spectrum we verified that each region had a unique frequency band and statistical characteristics as well. The results of this analysis showed that the real and imaginary portions were shown to be both normal distributions in each frequency bin. The reverberation envelope had a Rayleigh distribution and the phase had a uniform distribution.

  • PDF

Characteristics of Acoustic Impulse Response of Submerged Cylindrical Objects as Elements of Target-Scattered Echo (표적신호 시뮬레이션 요소로서 원통형 몰수체의 충격응답의 특성)

  • Kim, Jae-Soo;Seong, Nak-Jin;Lee, Sang-Young;Kim, Kang;Yu, Myong-Jong;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.5-13
    • /
    • 1994
  • Simulation of the target-scattered echo requires the understanding of scattering mechanism at the highlight points. In this paper, the basic assumption of Highlight Model is reviewed through the analyzed data obtained in the acoustic water tank experiment. The analysis shows that the scattering mechanism involves pulse elongation and frequency shift as elements of target-scattered echo, and that the internal structures affect the temporal response of the target-scattered echo significantly. The band-limited impulse response or Green's function due to the diffraction from highlight points of internal structures is not mere delta function, but acts like a filter, which causes frequency shift and is elongated in time.

  • PDF

Bistatic reverberation simulation using intersection of scattering cross section between sound source and receiver (음원과 수신기 사이에 교차 산란단면적을 이용한 양상태 잔향음 모의)

  • Oh, Raegeun;Kim, Sunhyo;Son, Su-Uk;Choi, Jee Woong;Park, Joung-Soo;Shin, Changhong;Ahn, Myonghwan;Lee, Bum Jik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • It is important to predict accurately reverberation level, which is a limiting factor in underwater target detection. Recently, the studies have been expanded from monostatic sonar to bistatic sonar in which source and receivers are separated. To simulate the bistatic reverberation level, the computation processes for propagation, scattering strength, and scattering cross section are different from those in monostatic case and more complex computation processes are required. Although there have been many researches for bistatic reverberation, few studies have assessed the bistatic scattering cross section which is a key factor in simulate reverberation level. In this paper, a new method to estimate the bistatic scattering cross section is suggested, which uses the area of intersection between two circles. Finally, the reverberation levels simulated with the scattering cross section estimated using the method suggested in this paper are compared with those estimated using the methods previously suggested and those measured from an acoustic measurements conducted in May 2013.

수중 산란의 수치적 해석기법

  • 김재환;김관주
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1998
  • 지난 30여년간 무한 영역에 놓인 유한한 뮬체에 의한 산란을 해석하기 위하여 여러가지 수치적 해석기법이 개발되었다. 이것은 소나, 잠수함 등의 수중 음향을 비롯해서 지진학, 초음파 비파괴검사 그리고 초음파 의료진단 등의 광범위한 영역에서 응용되고 있기 때문에 많은 연구가 있었다. 본 글에서는 먼저 무한 영역에서의 산란문제에 대한 기본 원리를 설명하고 지금까지 연구된 수치적 해석 기법들을 정리해서 소개하여 소음진동 분야에 종사하는 분들에게 응용할 수 있는 기회를 제공하고자 한다.

  • PDF

High Frequency Acoustic Scattering Analysis of Underwater Target (수중표적에 대한 고주파수 음향산란 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jong-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.528-533
    • /
    • 2005
  • A mono-static high frequency acoustic target strength analysis scheme was developed for underwater targets, based on the far-field Kirchhoff approximation. Au adaptive triangular beam method and a concept of virtual surface were adopted for considering the effect of hidden surfaces and multiple reflections of an underwater target, respectively. A test of a simple target showed that the suggested hidden surface removal scheme is valid. Then some numerical analyses, for several underwater targets, were carried out; (1) for several simple underwater targets, like sphere, square plate, cylinder, trihedral corner reflector, and (2) for a generic submarine model, The former was exactly coincident with the theoretical results including beam patterns versus azimuth angles, and the latter suggested that multiple reflections have to be considered to estimate more accurate target strength of underwater targets.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.