• Title/Summary/Keyword: 음향비선형 파라미터

Search Result 33, Processing Time 0.026 seconds

Estimation of Fracture Toughness Degradation of High Temperature Materials by Nonlinear Acoustic Effects (비선형 음향효과에 의한 고온 재료의 파괴인성 열화도 평가)

  • Jeong, Hyun-Jo;Nahm, Seung-Hoon;Jhang, Kyung-Young;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.424-430
    • /
    • 2000
  • In order to develop an ultrasonic evaluation method for properties degradation of high temperature materials, a number of Cr-Mo-V steel samples were heat-treated and their damage mechanism was examined. Ultrasonic parameters such as velocity, attenuation, and more recently developed nonlinear acoustic parameter were measured. The nonlinear acoustic parameter was found to be most sensitive to material degradation mainly attributed to the precipitation of impurities in grain boundaries. When compared to the electrical resistivity results, the nonlinear parameters showed similar behavior. There existed a relatively good correlation between the nonlinear parameter and the fracture appearance transition temperature (FATT) obtained by Charpy V-notch impact test. Based on the relationship between the FATT and the fracture toughness ($K_{IC}$), correlation between the nonlinear parameter and $K_{IC}$ was established.

  • PDF

Application of Non-linear Acoustic Effect for Evaluation of Degradation of 2.25Cr-1Mo Steel (2.25Cr-1Mo 강의 열화도 평가를 위한 비선형 음향효과 응용법)

  • Choi, Y.H.;Jhang, K.Y.;Park, I.K.;Kim, H.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.170-176
    • /
    • 2002
  • Nonlinear acoustic effect has been considered as an effective tool for the evaluation of material degradation. In this paper, the applicability of nonlinear acoustic effect to the evaluation of degraded 2.25Cr-1Mo steel is investigated. Firstly, artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Secondly, ultrasonic nonlinear parameter was quantitatively measured by bi-spectrum and power spectrum. Nonlinear acoustic parameter from bi-spectrum was found to be clearly sensitive to the aging time.

Evaluation of Surface Fatigue Degradation Using Acoustic Nonlinearity of Surface Wave (표면파의 음향비선형 특성을 이용한 표면 피로열화 평가)

  • Lee, Jae-Ik;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.415-420
    • /
    • 2009
  • This paper reports the results of a case study for the evaluation of surface damage by using acoustic nonlinearity of surface wave. In this study, the experimental system was constructed to measure the acoustic nonlinear parameter of surface wave in an Aluminum 6061 T6 specimen of which surface was damaged by the three point bending fatigue test, and magnitudes of nonlinear parameter measured before and after the fatigue test were compared. Especially, since the surface fatigue damage by the three point bending is concentrated at the central position of loading, the change in the nonlinear parameter around this position was monitored. Experimental results showed that the measured nonlinear parameter at the outside of this position after the fatigue test was almost same as the initial value before the fatigue test, since the fatigue damage at this position was little. However, clear increase in the nonlinear parameter was noticed after the fatigue test at the central position of specimen where the surface fatigue damage is expected to be concentrated.

Acoustic Nonlinearity of Surface Wave and Experimental Verification of Characteristics (표면파의 음향 비선형성과 실험적 특성 검증)

  • Lee, Jae-Ik;Kwon, Goo-Do;Lee, Tae-Hun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.344-350
    • /
    • 2009
  • The goal of this study is to introduce the theoretical background of acoustic nonlinearity in surface wave and to verify its characteristics by experiments. It has been known by theory that the nonlinear parameter of surface wave is proportional to the ratio of $2^{nd}$ harmonic amplitude and the power of primary component in the propagated surface wave, as like as in bulk waves. In this paper, in order to verify this characteristics we constructed a measurement system using contact angle beam transducers and measured the nonlinear parameter of surface wave in an Aluminum 6061 alloy block specimen while changing the distance of wave propagation and the input amplitude. We also considered the effect of frequency-dependent attenuation to the measurement of nonlinear parameter. Results showed good agreement with the theoretical expectation that the nonlinear parameter should be independent on the input amplitude and linearly dependent on the input amplitude and the $2^{nd}$ harmonic amplitude is linearly dependant on the propagation distance.

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.

A Study on the Evaluation of Material Degradation for 1Cr-1Mo-0.25V Steel using Linear and Nonlinear Ultrasonics (선형 및 비선형 초음파를 이용한 1Cr-1Mo-0.25V의 열화평가에 관한 연구)

  • Kim, Jeong-Pyo;Seok, Chang-Sung;Song, Sung-Jin;Kim, Young-Hwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.549-555
    • /
    • 2001
  • Ultrasonic is a powerful nondestructive technique for getting the information of flaws and material properties of in-services facilities. We prepared 4 different 1Cr-1Mo-0.25V specimens by Isothermal aging at $630^{\circ}C$. We evaluated material degradation using ultrasonic parameters, velocity, attenuation and harmonic generation. Attenuation and nonlinear parameter derived from harmonic generation efficiency increased as degradation. Especially the second harmonic of the fundamental wave in the 1,820h aging material was observed to exceed 20dB more than that in the un-aged material. But velocity remained virtually the same for all specimens. We concluded that nonlinear parameter and attenuation are sensitive to material degradation, but velocity was not. It'll be a good parameter for evaluating the material degradation.

  • PDF

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

Estimation of Speeker Recognition Parameter using Lyapunov Dimension (Lyapunov 차원을 이용한 화자식별 파라미터 추정)

  • Yoo, Byong-Wook;Kim, Chang-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.42-48
    • /
    • 1997
  • This paper has apparaised ability of speaker recognition and speech recognition using correlation dimension and Lyapunov dimension. In this method, speech was regarded the cahos that the random signal is appeared in determinisitic raising system. we deduced exact correlation dimension and Lyapunov dimension with searching important orbit from AR model power spectrum when reconstruct strange attractor using Taken's embedding theory. We considered a usefulness of speech recognition and speaker recognition using correlation dimension and Lyapunov dimension that characterized reconstruction attractor. As a result of consideration, which were of use more the speaker recognition than speech recognition, and in case of speaker recognition using Lyapunov dimension were much recognition rate more than speaker recognitions using correlation dimension.

  • PDF

Radial Basis Functions Networks Decision Feedback Equalizer with Competitive Learning (경쟁학습을 갖는 Radial Basis Function Networks 결정 궤한 등화기)

  • 서창우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1997.06a
    • /
    • pp.13-16
    • /
    • 1997
  • 본 논문에서는 Bayesian 결정 이론을 이용한 기존의 Radial Basis Function Networks 이되는 출력층에서 선형 조합되는 것과는 다른 형태의 방법을 제안하고자 한다. 제안하고자 하는 방법은 은닉층의 출력값과 가중치와의 곱해진 값이 출력층의 입력으로 들어오는데 이들 입력신호를 경쟁을 통하여 가장 큰 값만을 출력신호 인정하는 방법이다. 이런 경우에 파라미터 갱신을 할 때도 모든 가중치를 다 갱신하는 것이 아니라 출력되는 은닉층에 연결된 가중치만을 갱신하게된다. 이렇게 할 경우 계산량 감소뿐만 아니라 학습시간을 단축할 수 있다는 장점이 있다. 그리고 제안한 방법을 이용할 경우 비선형 분류문제에서도 우수한 성능결과를 확인 할 수 있었으며 기존의 RBFN rhk Wiener Filter와 성능을 비교하였다.

  • PDF