• Title/Summary/Keyword: 음향방출 센서

Search Result 93, Processing Time 0.034 seconds

Study on the Damage Characteristics Under the High-Velocity Impact of Composite Laminates Using Various Sensor Signals (다양한 센서 신호를 이용한 복합적층판의 고속충격 손상 특성 연구)

  • Cho, Sang-Gyu;Kim, In-Gul;Lee, Seok-Je;You, Won-Young
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • The use of advanced composite materials in main structures of military and civil aircraft has been increased rapidly because of their considerable metals in high specific strength and stiffness. However, the mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single sensor or any conventional methods. In this paper, the PVDF sensors and AE sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) is used to decompose the sensor signals. In the PVDF sensor and AE sensor signal analysis, amounts of high-frequency signals are increased when the impact energy is increased. PVDF sensor and AE sensor signal appeared similar results. This study shows how various sensing techniques can be used to characterize high-velocity impact damage of advanced composite laminates.

Development of Smart Active Layer Sensor (II): Manufacturing and Application (스마트 능동 레이어 센서 개발 (II): 저작 및 적용 연구)

  • Lee, Young-Sup;Lee, Sang-Il;Kwon, Jae-Hwa;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.476-486
    • /
    • 2004
  • This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

An Experimental Study on Elastic Wave Propagation in a Symmetrically Filament-Wound Composite Motor Case (대칭 적층 복합재 연소관의 탄성파 전파에 관한 실험적 연구)

  • Song, Sung-Jin;Choe, Ji-Ung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.191-204
    • /
    • 1998
  • One of the key issues in acoustic emission (AE) during hydroproof test of filament-wound composite rocket motor cases is the determination of the optimal component of elastic wave to be monitored. To solve this problem, broadband ultrasonic wave was generated into a symmetrically filament-wound composite motor case, and was received at 105 different locations after the propagation through the composite case with different distances and directions. By analysis of the received signals, characteristics of elastic wave propagation such as frequency components, the maximum propagating distance, and velocity surface were investigated. This analysis was performed for two different conditions of the motor case; air-filled and hydraulically pressurized. Based on these information, the effect of hydraulic pressure on the wave propagation characteristics was investigated and furthermore, the optimal component of elastic wave for AE during hydroproof test of the motor case was successfully determined.

  • PDF

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF

Acoustic Emission Monitoring of Incipient Failure in Journal Bearings( III ) - Development of AE Diagnosis System for Journal Bearings - (음향 방출을 이용한 저어널 베어링의 조기 파손 감지(III) -저어널 베어링 AE 진단 시스템 개발-)

  • Chung, Min-Hwa;Cho, Yong-Sang;Yoon, Dong-Jin;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.155-161
    • /
    • 1996
  • For the condition monitoring of the journal bearing in rotating machinery, a system for their diagnosis by acoustic emission(AE) was developed. AE has been used to detect abnormal conditions in the bearing system. It was found from the field application study as well as the laboratory experiment using a simulated journal bearing system that AE RMS voltage was the most efficient parameter for the purpose of current study. Based on the above results, algorithms and judgement criteria for the diagnosis system was established. The system is composed of four parts as follows: the sensing part including AE sensor and preamplifier, the signal processing part for RMS-to-DC conversion to measure AE ms voltage, the interface part for transferring RMS voltage data into PC using A/D converter, and the software part including the graphic display of bearing conditions and the diagnosis program.

  • PDF

A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding (전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구)

  • Kim, Tae-Wan;Lee, Jong-Ryul;Lee, Deug-Woo;Song, Ji-Bok;Choi, Dae-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

Surface Condition Monitoring in Magnetic Abrasive Polishing of NAK80 Using AE Sensor and Neural Network (AE 센서와 신경회로망을 이용한 NAK80 금형강의 자기연마 가공특성 모니터링)

  • Kim, Kwang-Heui;Shin, Chang-Min;Kim, Tae-Wan;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.601-607
    • /
    • 2012
  • The magnetic abrasive polishing (MAP), for online monitoring with AE sensor attachment, was performed in this study. To predict the surface roughness after the magnetic abrasive polishing of NAK80, the signal data acquired from the AE sensor were analyzed. A dimensionless coefficient, which consisted of average of AErms and standard deviation of AE signal, was defined as a characteristic of the MAP and a prediction model was obtained using least square method. A neural network, which had multiple input parameters from AE signals and polishing conditions, was applied for predicting the surface roughness. As a result of this study, it was seen that there was very close correlation between the AE signal and the surface roughness in the MAP. And then on-line prediction of the surface roughness after the MAP of the NAK80 was possible by the developed prediction model.

A Study on the Determination of Grinding Wheel Life and Dressing Time Using AE Sensor (AE센서를 이용한 숫돌의 수명판정 및 드레싱시간의 결정에 관한 연구)

  • Jun, Kil-Jae;Lee, Sang-Tae;Kim, Nam-Kyung;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.95-102
    • /
    • 2002
  • The grinding operation is an important machining process for machining of final surface. However, grinding process has inevitable troubles such as loading and glazing for grinding wheel. It is, therefore, an essential research theme to determine the wheel life and the dressing time for efficient grinding. In this study, AE signals (AEavg) generated in the grinding operation were measured and the dressing time was determined from the analysis of the AEavg value. To verify the propriety of the obtained result, the AE signals measured on the grinding and the dressing operation were compared with the grinding force signals and the dressing force which were measured at same time. From the obtained result, it was confirmed that the determination of the wheel life and the dressing tilde by the AE measurement technique proposed in this study can be practically used.

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Development of Fiber-Optic AE Sensor for On-Line Monitoring System (광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발)

  • Nam, Jae-Yeong;Jeong, Jae-Hyeon;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.