• Title/Summary/Keyword: 음향방사특성

Search Result 164, Processing Time 0.021 seconds

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF

A Study of QMSA Characteristics According to the Gap Variance between Ground Plane and Radiation Patch (접지판과 방사 패치 사이의 간격 변화에 따른 QMSA의 특성 연구)

  • Ryu, Hyun;Park, Sung-Kyo;Park, Chong-Baek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 1999
  • In this paper, we designed and fabricated QMSA(Quarter-Wavelength Microstrip Antenna) for 850MHz band on the CGP-500 PTFE substrate(by CHUKOH company) with ε/sub r/=2.6, H=1.6mm(±0.08), where width of the radiation patch is .identical with that of the ground plane. A well matched feed point was obtained by experiments and this QMSA was fed by using prove feed method. The resonant frequencies and the return losses were mcasured by cutting the gap L₃ between the radiation patch and the ground plane, with a 5mm cutting length, step by step. As a result, we found that the measured return losses were decreased and the resonant frequencies were increased when the gap L₃ was shorter, especially under 10mm, unlike we had expected.

  • PDF

Radiation characteristics analysis of Langevin transducer having a rim-fixed circular plate (주위가 고정된 원형 평판을 가진 란주반 트랜스듀서의 방사 특성 해석)

  • Jungsoon Kim;Jiwon Yoon;Moojoon Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.391-399
    • /
    • 2024
  • In order to analyze the distribution of sound fields radiating from a circular plate vibrated by a Langevin transducer, a theoretical analysis model was derived. The boundary conditions of the driving area and fixed boundary area were appropriately applied to the equation of motion of the vibrating plate, which was derived by L. Rayleigh. By calculating the vibration displacement distributed on the surface of the vibrating plate using the derived analysis model and then calculating the sound field formed by the ultrasonic waves radiating from it, it was confirmed that the radiation characteristics vary significantly depending on the area of the vibrating plate. For comparison, a simulation of the same system was performed using the COMSOL program, a finite element method, and showed good agreement with the theoretical calculation results, confirming the effectiveness of the theoretical analysis model derived in thisstudy. It is expected that the theoretical analysis model derived from this study can be used in the design and development of related devices, such as in the ultrasonic chemistry field.

Study on noise prediction by classification of noise sources of a tip-jet driven rotor (팁젯 로터의 소음원 구분을 통한 소음 예측 기법 연구)

  • Ko, Jeongwoo;Kim, Jonghui;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • The noise sources of a tip-jet driven rotor can be separated by rotor blade noise and jet noise. The rotor blade noise consists of thickness noise, loading noise, nonlinear quadrupole noise, and jet noise is divided into nozzle momentum noise and jet radiation noise. The flow analysis for the prediction of rotor blade noise is performed by CFD (Computational Fluid Dynamics) analysis, and the noise source of the rotor blade noise is identified by simultaneously applying the permeable and impermeable surface based FW-H (Ffowcs Williams-Hawkings) acoustic analogy. The nozzle momentum noise is obtained by permeable surface FW-H, and jet radiation noise is predicted by using empirical method for the fixed-wing jet. Both of jet noises use nozzle exit condition for noise analysis. The accuracy of the technique is verified based on the noise measurements of the tip-jet driven rotor, and the unique noise characteristics of the tip-jet driven rotor is confirmed by spectrum analysis.

Insertion loss by bubble layer surrounding a spherical elastic shell submerged in water (수중의 구형 탄성 몰수체를 둘러싼 기포층에 의한 삽입손실)

  • Lee, Keunhwa;Lee, Cheolwon;Park, Cheolsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2022
  • Acoustic radiation from a submerged elastic shell with an internal fluid surrounded by the bubble layer is studied with the modal theory. An omni-directional point source located on the center of the internal fluid is used as acoustic noise source. The unknown coefficients of modal solutions are solved using the interface conditions between media. To preserve the stability of the modal solution over wide frequency ranges, the scaled technique of modal solution is used. The bubble layer is modeled with four kinds of bubble distribution; uni-modal distribution, uniform distribution, normal distribution, and power-law distribution, based on the effective medium theory of Commander and Prosperetti. For each bubble distribution, the insertion losses are mainly calculated for the frequency. In addition, the numerical simulations are performed depending in the bubble void fraction, the material property of elastic shell, and the gap between the bubble layer and the elastic shell.

An Analysis of the Acoustical Source Characteristics in the Time-varying Fluid Machines (유체기계 덕트 내 시변 음원의 음향 특성에 관한 연구)

  • 장승호;이준신;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2003
  • The in-duct acoustical sources of fluid machines are often characterized by the source impedance and strength using the linear time-invariant model. However, negative resistances, which are physically unreasonable, have been found throughout various measurements of the source properties in IC-engines and compressors. In this paper, the effects of the time-varying nature of fluid machines on the source characteristics are studied analytically. For this purpose, the simple fluid machine consisting of a reciprocating piston and an exhaust is considered as representing a typical periodic, time-varying system and the equivalent circuits are analyzed. Simulated measurements using the analytic solutions show that the time-varying nature in the actual sources is one of the main causes of the negative source resistances. It is also found that, for the small magnitude of the time-varying component, the source radiates large acoustic power if the piston operates at twice the natural frequency of the static system. or integral submultiples of that rate.

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

Radiation of the damper of Loudspeaker (스피커 댐퍼의 음향방사)

  • Yi H.R.;Oh S.J.;Yoon S.W.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.127-130
    • /
    • 2004
  • 다이나믹 스피커의 진동판과 보이스코일을 지지하는 댐퍼는 스피커 진동부에 복원력을 공급하는 탄성체로서만 고려되어 왔다. 즉, 음파발생 장치로서 스피커를 고려할 때, 음파발생부로서 진동판과 부가적 음파발생부로서 에지에 의한 영향만이 고려되어 왔다. 본 논문에서는 진동판과 에지를 제거한 후, 댐퍼와 보이스코일 만으로 진동하는 다이나믹 스피커를 제작하여 댐퍼에 의해 발생된 음파의 특성을 측정하였다. 다음으로 댐퍼를 개별적인 음원으로 가정하여 댐퍼에 의해 발생된 음파를 계산하여 측정치와 비교하였다. 결론적으로 댐퍼는 스피커 진동계 복원력을 제공하는 요소로저 만이 아닌 진동판 이외의 부가적인 음원이 됨을 확인할 수 있었다.

  • PDF

Acoustic characteristics of micro-loudspeaker used metallic diaphragm (금속 진동판을 이용한 초소형 스피커의 음향 특성)

  • Doh Sung-Hwan;Jun Kyo-Pil;Oh Sei-Jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.503-504
    • /
    • 2004
  • 휴대용 개인 단말기기(Personal digital assistants)의 높은 보급률에 따라 초소형 스피커(Micro-loudspeaker)의 수요가 급격히 증가하면서, 초소형 스피커의 성능 개선이 절실히 요구되고 있다. 본 연구에서는 초소형 스피커의 진동판 소재로 사용되는 폴리에틸렌 나프탈레이트(PEN)와 폴리에테르 이미르(PEI)의 수지 계열 진동판과 니켈(Ni) 진동판의 방사 효율을 비교 분석하여, 진동계의 관점에서 금속 진동판의 활용 가능성에 대해 고찰하였다.

  • PDF

Research for Characteristics of Sound Localization at Monaural System Using Acoustic Energy (청각에너지를 이용한 모노럴 시스템에서의 음상 정위 특성 연구)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.181-189
    • /
    • 2011
  • According to developments of digital signal processing, 3D sound come into focus on multimedia systems. Many studies on 3d sound have proposed lots of clues to create realistic sounds. But these clues are only focused on binaural systems which two ears are normal. If we make the 3d sound using those clues at monaural systems, the performance goes down dramatically. In order to use the clues for monaural systems, we have studies algorithms such as duplex theory. In duplex theory, the sounds that we listen are affected by human's body, pinna and shoulder. So, we can enhance sound localization performances using its characteristics. In this paper, we propose a new method to use psychoacoustic theory that creates realistic 3D audio at monaural systems. To improve 3d sound, we calculate the excitation energy rates of each symmetric HRTF and extract the weights in each bark range. Finally, they are applied to emphasize the characteristics related to each direction. Informal listening tests show that the proposed method improves sound localization performances much better than the conventional methods.