• 제목/요약/키워드: 음향데이터

검색결과 944건 처리시간 0.024초

구조적 희소성 기반 압축 센싱 알고리즘을 통한 측면주사소나 영상의 비균일 잡음 제거 (Non-homogeneous noise removal for side scan sonar images using a structural sparsity based compressive sensing algorithm)

  • 진영생;구본화;이승호;김성일;고한석
    • 한국음향학회지
    • /
    • 제37권1호
    • /
    • pp.73-81
    • /
    • 2018
  • 측면주사소나 영상의 화질은 소나 운용 주파수의 영향을 받는다. 저주파 측면주사소나 장비로 얻는 영상은 저화질 영상이며, 잡음이 화질 저하의 요소 중 하나가 된다. 균일한 잡음을 가정하는 광학 영상과는 달리. 측면주사소나 데이터의 잡음은 해양 환경(장비 소음, 신호 간섭 등)에 의해 발생한다. 또한 소나 신호의 전달 손실을 보상하고자 시간변환이득(Time-Varied Gain, TVG)을 수행하며, 이로 인해 측면주사소나 영상에 비균일 잡음이 생성된다. 본 논문에서는 측면주사소나 영상에 포함된 비균일 잡음을 제거하는 구조적 희소성에 기반한 압축 센싱 알고리즘 (Structural Sparsity based Compressive Sensing, SSCS)을 제안한다. 영상의 구조적 특징 도메인에서 국부적 및 비국부적 모델링을 동시에 구현하여 계수의 희소성을 보장하면서 비국부적 자가 유사성을 강화한다. 그리고 잡음의 비균일성을 고려하여 비국부적 모델링을 보상한다. 다양한 모의 실험을 통해 제안한 알고리즘의 우수성을 입증한다.

큰돌고래의 휘슬음 특성 (Characteristics of Bottlenose Dolphin(Tursiops truncatus) Whistle)

  • 신형일;서두옥;이대재;황두진;배문기;이유원
    • 수산해양기술연구
    • /
    • 제38권4호
    • /
    • pp.271-277
    • /
    • 2002
  • 고래류의 어업공해를 최소화하고 환경친화적으로 이용할 수 있는 음향 유인/경고시스템을 개발하기 위한 기초연구의 일환으로 우리 나라 연근해에 자주 출현하는 큰돌고래의 휘슬음을 서울대공원 돌고래 쇼장에서 측정, 분석한 결과를 요약하면 다음과 같다. 1 수족관 내에서 생활하고 있는 큰돌고래의 평상시 휘슬음의 중심 주파수대와 스팩트럼 레벨은 각각 6~10KHz 와 85㏈을 나타내었고, 이들을 서로 격리시킨 경우, 중심 주파수는 6.7KHz대와 21.3KHz대 두 개의 고조파를 나타내었으며, 스팩트럼 레벨은 각각 110㏈와 94㏈를 나타내어 평상시보다는 불안정한 휘슬음의 주파수대와 다른 형태를 나타내었다. 2. 평상시의 휘슬음 주파수 변동폭은 평균 3.86KHz이었고, 지속시간은 평균 0.08sec를 나타내었다. 그러나 격리시킨 경우는 평상시와는 달리 그 변동폭은 평균 l4.06KHz이었고, 지속시간은 평균 0.l9sec를 나타내어 평상시와 비교하여 주파수 변동폭이 10.20KHz 높아지고 지속시간은 0.11sec 길어짐을 알 수 있었다. 더욱이 Mann-Whitney 검정을 통하여 휘슬음의 주파수 변동폭과 지속시간 모두 평상시와 1마리를 격리시켰을 때는 상이함에 유의성을 확인할 수 있었다. 3. 돌고래 쇼장에서의 휘슬음의 패턴 모델을 6가지 형태로 분류할 수 있었고, 평상시에는 5~10KHz 범위의 주파수로 서서히 상승하는 형이 거의 대부분이었으나, 격리시킨 경우에는 5~20KHz의 폭 넓은 주파수대에 걸쳐 여러 가지 패턴을 관찰할 수 있었으며, 특히 주파수가 상승한 후 일정하게 유지되는 형태의 패턴이 많이 관찰되었다. 한편, 휘슬음은 종간 및 생활환경에 따라 사용되는 주파수 대역폭이 서로 다른 것을 예상할 수 있으므로 우리 나라 연안에는 큰돌고래, 참돌고래, 낫돌고래, 상괭이 등 비교적 많은 돌고래류가 자주 출현하고 있어 이들 종들에 대한 위협음 및 유인음에 대한 대역을 파악하기 위해서는 각 종들에 대한 수중음향은 물론 행동도 함께 분석할 필요가 있으며 더욱이 폭 넓은 현장실험과 데이터 축적을 병행하여야 할 것이다.

GMM을 위한 점진적 ${\cal}k-means$ 알고리즘에 의해 초기값을 갖는 EM알고리즘과 화자식별에의 적용 (EM Algorithm with Initialization Based on Incremental ${\cal}k-means$ for GMM and Its Application to Speaker Identification)

  • 서창우;한헌수;이기용;이윤정
    • 한국음향학회지
    • /
    • 제24권3호
    • /
    • pp.141-149
    • /
    • 2005
  • 개개인의 음성을 이용한 화자식별에서, 화자 모델을 추정하는데 가우시안 혼합모델이 주로 사용된다. 최대 우도 추정을 갖는 가우시안 혼합모델의 파라미터 추정은 Expectation-Maximisation (EM)을 사용하여 얻을 수 있다. 그러나, EM 알고리즘은 초기값에 상당히 민감하고, 혼합성분의 개수를 미리 알고 있어야 하는 단점이 있다. 본 논문에서는, EM 알고리즘의 문제점을 해결하기 위하여 가우시안 혼합모델을 위한 점진적 ${\cal}k-means$ 알고리즘에 의한 초기값을 갖는 EM 알고리즘을 제안한다. 제안된 방법은 혼합성분의 개수를 점진적 ${\cal}k-means$ 방법을 이용하여 한번에 하나씩 혼합성분을 추정하여 최적의 혼합성분이 얻어 질 때까지 이를 반복 수행한다. 하나의 혼합성분이 추가될 때마다, 새로 얻어진 혼합성분과 이전에 구한 혼합성분들간의 상호 관계를 각각 측정한다. 이로부터, 통계적으로 독립인 최적의 혼합성분 개수를 추정할 수 있다. 제안된 방법의 성능을 확인하기 위하여 임의의 생성 데이터와 실제 음성을 사용하였다. 실험 결과에서, 제안된 방법이 기존의 방법보다 화자 식별 성능이 우수하였으며, 또한 성능을 유지하면서도 계산량 감소의 효과까지 볼 수 있었다.

음성처리에서 온라인 오류역전파 알고리즘의 학습속도 향상방법 (A Method on the Learning Speed Improvement of the Online Error Backpropagation Algorithm in Speech Processing)

  • 이태승;이백영;황병원
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.430-437
    • /
    • 2002
  • 다층신경망 (MLP: multilayer perceptron)은 다른 패턴인식 방법에 비해 여러 가지 훌륭한 특성을 가지고 있어 음성인식 및 화자인식 영역에서 폭넓게 사용되고 있다. 그러나 다층신경망의 학습에 일반적으로 사용되는 오류역전파 (EBP: error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 화자인식이나 화자적응과 같이 실시간 처리를 요구하는 응용에서 상당한 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 다층신경망의 내부변수를 갱신하는 온라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 오류역전파 알고리즘에서는 가중치 갱신 시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률이 고정된 상태에서는 학습이 진행됨에 따라 학습에 기여하는 패턴영역이 달라지는 현상에 효과적으로 대응하지 못하는 문제가 있다. 이 문제에 대해 본 논문에서는 패턴의 기여도에 따라 가변 하는 학습률과 학습에 기여하는 패턴만을 학습에 반영하는 패턴별 가변 학습률 및 학습생략 (COIL: Changing rate and Omitting patterns in Instant Learning)방법을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

실시간 처리를 위한 멀티채널 오디오 코덱의 구현 (The Implementation of Multi-Channel Audio Codec for Real-Time operation)

  • 홍진우
    • The Journal of the Acoustical Society of Korea
    • /
    • 제14권2E호
    • /
    • pp.91-97
    • /
    • 1995
  • 본 논문은 저비트율을 갖는 고품질의 HDTV용 멀티채녈 오디오 코덱을 구현에 대해 기술한다. 이 코덱은 저주파수 효과 채널을 포함한 최대 3/2 스테레오 채널 구성, 최대 채널 구성보다 낮은 채널 구성과의 호환성, 기존 2채널 스테레오 시스템과의 호환성(MPEG-1 오디오), 그리고 다중 대화 채널 등을 제공하는 특징을 갖는다. 구현한 멀티채널 오디오 코덱의 인코더는 3개의 DSP(TI의 TMS320C40)로 구성되었고, 최대 48KHz 샘플링율과 16비트의 부호화를 갖는 5.1 채널의 아날로그 및 AES/EBU, IEC 958등의 포맷을 갖는 스테레오 2채널의 디지털 오디오를 이력으로 받아 지각 심리음향 모델을 사용하여 압축한후 384Kbps의 빛 스트림으로 전송하는 특징을 가지며, 디코더는 2개의 DSP로 구성되어 있고, 384Kbps로 입력되는 비트 스트림을 받아 최대 5.1 채널의 아날로그 및 2개의 2채널 스테레오의 디지털 오디오 신호로 출력시키는 특징을 갖는다. DSP를 이용한 다중처리는 DMA를 통한 통신포트를 이용한 DSP들간의 고속 데이터 전송에 의해 이루어진다. 끝으로, 멀티 채널 오디오 코덱의 구현을 통하여 나타난 실시간 처리는 위해 고려해야할 기술적 사항을 제안한다.

  • PDF

화자 검증을 위한 마스킹된 교차 자기주의 인코딩 기반 화자 임베딩 (Masked cross self-attentive encoding based speaker embedding for speaker verification)

  • 서순신;김지환
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.497-504
    • /
    • 2020
  • 화자 검증에서 화자 임베딩 구축은 중요한 이슈이다. 일반적으로, 화자 임베딩 인코딩을 위해 자기주의 메커니즘이 적용되어졌다. 이전의 연구는 마지막 풀링 계층과 같은 높은 수준의 계층에서 자기 주의를 학습시키는 데 중점을 두었다. 이 경우, 화자 임베딩 인코딩 시 낮은 수준의 계층의 영향이 감소한다는 단점이 있다. 본 연구에서는 잔차 네트워크를 사용하여 Masked Cross Self-Attentive Encoding(MCSAE)를 제안한다. 이는 높은 수준 및 낮은 수준 계층의 특징 학습에 중점을 둔다. 다중 계층 집합을 기반으로 각 잔차 계층의 출력 특징들이 MCSAE에 사용된다. MCSAE에서 교차 자기 주의 모듈에 의해 각 입력 특징의 상호 의존성이 학습된다. 또한 랜덤 마스킹 정규화 모듈은 오버 피팅 문제를 방지하기 위해 적용된다. MCSAE는 화자 정보를 나타내는 프레임의 가중치를 향상시킨다. 그런 다음 출력 특징들이 합쳐져 화자 임베딩으로 인코딩된다. 따라서 MCSAE를 사용하여 보다 유용한 화자 임베딩이 인코딩된다. 실험 결과, VoxCeleb1 평가 데이터 세트를 사용하여 2.63 %의 동일 오류율를 보였다. 이는 이전의 자기 주의 인코딩 및 다른 최신 방법들과 비교하여 성능이 향상되었다.

화자 구분 시스템의 관심 화자 추출을 위한 i-vector 유사도 기반의 음성 분할 기법 (I-vector similarity based speech segmentation for interested speaker to speaker diarization system)

  • 배아라;윤기무;정재희;정보경;김우일
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.461-467
    • /
    • 2020
  • 잡음이 많고 여러 사람이 있는 공간에서 음성인식의 성능은 깨끗한 환경보다 저하될 수밖에 없다. 이러한 문제점을 해결하기 위해 본 논문에서는 여러 신호가 섞인 혼합 음성에서 관심 있는 화자의 음성만 추출한다. 중첩된 구간에서도 효과적으로 분리해내기 위해 VoiceFilter 모델을 사용하였으며, VoiceFilter 모델은 여러 화자의 발화로 이루어진 음성과 관심 있는 화자의 발화로만 이루어진 참조 음성이 입력으로 필요하다. 따라서 본 논문에서는 Probabilistic Linear Discriminant Analysis(PLDA) 유사도 점수로 군집화하여 혼합 음성만으로도 참조 음성을 대체해 사용하였다. 군집화로 생성한 음성에서 추출한 화자 특징과 혼합 음성을 VoiceFilter 모델에 넣어 관심 있는 화자의 음성만 분리함으로써 혼합 음성만으로 화자 구분 시스템을 구축하였다. 2명의 화자로 이루어진 전화 상담 데이터로 화자 구분 시스템의 성능을 평가하였으며, 분리 전 상담사(Rx)와 고객(Tx)의 음성 Source to Distortion Ratio(SDR)은 각각 5.22 dB와 -5.22 dB에서 분리 후 각각 11.26 dB와 8.53 dB로 향상된 성능을 보였다.

멀티태스크 러닝 심층신경망을 이용한 화자인증에서의 나이 정보 활용 (Utilization of age information for speaker verification using multi-task learning deep neural networks)

  • 김주호;허희수;정지원;심혜진;김승빈;유하진
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.593-600
    • /
    • 2019
  • 화자 간 음색의 유사성은 화자 인증 시스템의 성능을 하락 시킬 수 있는 요인이다. 본 논문은 화자 인증 시스템의 일반화 성능을 향상시키기 위해, 심층신경망에 멀티태스크 러닝 기법을 적용시켜 발화자의 화자 정보와 나이 정보를 함께 학습 시키는 기법을 제안한다. 멀티태스크 러닝 기법은 은닉층들이 하나의 태스크에 과적합 되지 않도록 하여 심층신경망의 일반화 성능을 향상시킨다고 알려져 있다. 하지만 심층신경망을 멀티태스크 러닝 기법으로 학습시키는 과정에서, 나이 정보에 대한 학습이 효율적으로 수행되지 않는 것을 실험적으로 확인하였다. 이와 같은 현상을 방지하기 위해, 본 논문에서는 심층신경망의 학습 과정 중 화자 식별과 나이 추정 목적 함수의 가중치를 동적으로 변경 하는 기법을 제안한다. 동일 오류율을 기준으로 RSR2015 평가 데이터세트에 대해 화자 인증 성능을 평가한 결과 나이 정보를 활용하지 않은 화자 인증 시스템의 경우 6.91 %, 나이 정보를 활용한 화자 인증 시스템의 경우 6.77 %, 나이 정보를 활용한 화자 인증 시스템에 가중치 변경 기법을 적용한 경우 4.73 %의 오류율을 확인하였다.

Lexicon transducer를 적용한 conformer 기반 한국어 end-to-end 음성인식 (Conformer with lexicon transducer for Korean end-to-end speech recognition)

  • 손현수;박호성;김규진;조은수;김지환
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.530-536
    • /
    • 2021
  • 최근 들어 딥러닝의 발달로 인해 Hidden Markov Model(HMM)을 사용하지 않고 음성 신화와 단어를 직접 매핑하여 학습하는 end-to-end 음성인식 방법이 각광을 받고 있으며 그 중에서도 conformer가 가장 좋은 성능을 보이고 있다. 하지만 end-to-end 음성인식 방법은 현재 시점에서 어떤 자소 또는 단어가 나타날지에 대한 확률에 대해서만 초점을 두고 있다. 그 이후의 디코딩 과정은 현재 시점에서 가장 높은 확률을 가지는 자소를 출력하거나 빔 탐색을 사용하며 이러한 방식은 모델이 출력하는 확률 분포에 따라 최종 결과에 큰 영향을 받게 된다. 또한 end-to-end 음성인식방식은 전통적인 음성인식 방법과 비교 했을 때 구조적인 문제로 인해 외부 발음열 정보와 언어 모델의 정보를 사용하지 못한다. 따라서 학습 자료에 없는 발음열 변환 규칙에 대한 대응이 쉽지 않다. 따라서 본 논문에서는 발음열 정보를 담고 있는 Lexicon transducer(L transducer)를 이용한 conformer의 디코딩 방법을 제안한다. 한국어 데이터 셋 270 h에 대해 자소 기반 conformer의 빔 탐색 결과와 음소 기반 conformer에 L transducer를 적용한 결과를 비교 평가하였다. 학습자료에 등장하지 않는 단어가 포함된 테스트 셋에 대해 자소 기반 conformer는 3.8 %의 음절 오류율을 보였으며 음소 기반 conformer는 3.4 %의 음절 오류율을 보였다.

잡음 환경에 효과적인 마스크 기반 음성 향상을 위한 손실함수 조합에 관한 연구 (A study on combination of loss functions for effective mask-based speech enhancement in noisy environments)

  • 정재희;김우일
    • 한국음향학회지
    • /
    • 제40권3호
    • /
    • pp.234-240
    • /
    • 2021
  • 본 논문에서는 잡음 환경에서 효과적인 음성 인식을 위해 마스크 기반의 음성 향상 기법을 개선한다. 마스크 기반의 음성 향상 기법에서는 심층 신경망을 기반으로 추정한 마스크를 잡음 오염 음성에 곱하여 향상된 음성을 얻는다. 마스크 추정 모델로 VoiceFilter(VF) 모델을 사용하고 추정된 마스크로 얻은 음성으로부터 잔여 잡음을 보다 확실히 제거하기 위해 Spectrogram Inpainting(SI)기법을 적용한다. 본 논문에서는 음성 향상 결과를 보다 개선하기 위해 마스크 추정을 위한 모델 학습 과정에 사용되는 조합된 손실함수를 제안한다. 음성 구간에 남아 있는 잡음을 보다 효과적으로 제거하기 위해 잡음 오염 음성에 마스크를 적용한 Triplet 손실함수의 Positive 부분을 컴포넌트 손실함수와 조합하여 사용한다. 실험 평가를 위한 잡음 음성 데이터는 TIMIT 데이터베이스와 NOISEX92, 배경음악 잡음을 다양한 Signal to Noise Ratio(SNR) 조건으로 합성하여 만들어 사용한다. 음성 향상의 성능 평가는 Source to Distortion Ratio(SDR), Perceptual Evaluation of Speech Quality(PESQ), Short-Time Objective Intelligibility(STOI)를 이용한다. 실험을 통해 평균 제곱 오차로만 훈련된 기존 시스템과 비교하여, VF 모델은 평균 제곱 오차로 훈련하고 SI 모델은 조합된 손실함수를 사용하였을 때 SDR은 평균 0.5dB, PESQ는 평균 0.06, STOI는 평균 0.002만큼 성능이 향상된 것을 확인했다.