• Title/Summary/Keyword: 음파발광

Search Result 2, Processing Time 0.016 seconds

Evaluate the Effect of Megasonic Cleaning on Pattern Damage (메가소닉 세정시 발생되는 패턴손상 최소화에 대한 연구)

  • Yu, Dong-Hyun;Ahn, Young-Ki;Ahn, Duk-Min;Kim, Tae-Sung;Lee, Hee-Myoung;Kim, Jeong-In;Lee, Yang-Lae;Kim, Hyun-Se;Lim, Eui-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2511-2514
    • /
    • 2008
  • As the minimum feature size decreases, techniques to avoid contamination and processes to maintain clean wafer surfaces have become very important. The deposition and detachment of nanoparticles from surfaces are major problem to integrated circuit fabrication. Therefore, cleaning technology which reduces nanoparticles is essential to increase yield. Previous megasonic cleaning technology has reached the limits to reduce nanoparticles. Megasonic cleaning is one of the efficiency method to reduce contamination nanoparticle. Two major mechanisms are active in a megasonic cleaning, namely, acoustic streaming and cavitation. Acoustic streaming does not lead to sufficiently strong force to cause damage to the substrates or patterns. Sonoluminescence is a phenomenon of light emission associated with the cavitation of a bubble under ultrasound. We studied a correlation between sonoluminescence and sound pressure distribution for the minimum of pattern damage in megasonic cleaning.

  • PDF

Implementation of underwater visible light communication system interlinked with bluetooth (블루투스와 연동하는 수중 가시광 통신 시스템의 구현)

  • Kim, Min-Soo;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.923-928
    • /
    • 2014
  • Communication underwater is severely limited when compared to communications in air because water is essentially opaque to electromagnetic radiation except in visible range. Acoustic systems are capable of long range communication, but offer limited data rates and significant latency due to the speed of sound in water. On the other hand, optical wireless communication has been proposed as one of the best alternatives to meet the requirements of the underwater observation and subsea monitoring systems. It will help In this study, we are developing an underwater optical communication system that integrates with a depot ship floating on the water. An interface between LED lighting communication system and Bluetooth module is presented to support the underwater-to-air communications. Error free image and text transmission at 3 m of water were achieved at bit rates of 230.4 kbps. This development effort will enhance infrastructure to efficiently interconnect between underwater wireless systems and command ship networks for underwater monitoring.