DOI QR코드

DOI QR Code

Implementation of underwater visible light communication system interlinked with bluetooth

블루투스와 연동하는 수중 가시광 통신 시스템의 구현

  • Kim, Min-Soo (Department of Electronics and Communications Engineering, Korea Maritime and Ocean University) ;
  • Sohn, Kyung-Rak (Department of Electronics and Communications Engineering, Korea Maritime and Ocean University)
  • Received : 2014.06.16
  • Accepted : 2014.09.12
  • Published : 2014.09.30

Abstract

Communication underwater is severely limited when compared to communications in air because water is essentially opaque to electromagnetic radiation except in visible range. Acoustic systems are capable of long range communication, but offer limited data rates and significant latency due to the speed of sound in water. On the other hand, optical wireless communication has been proposed as one of the best alternatives to meet the requirements of the underwater observation and subsea monitoring systems. It will help In this study, we are developing an underwater optical communication system that integrates with a depot ship floating on the water. An interface between LED lighting communication system and Bluetooth module is presented to support the underwater-to-air communications. Error free image and text transmission at 3 m of water were achieved at bit rates of 230.4 kbps. This development effort will enhance infrastructure to efficiently interconnect between underwater wireless systems and command ship networks for underwater monitoring.

수중통신은 통신채널로서의 물이 가시광 영역을 제외한 전자파 영역에는 본질적으로 전도성이 매우 떨어지므로 공기 중 통신에 비하여 성능이 심각하게 제한된다. 음파통신은 장거리 전송이 가능하지만 전자파에 비하여 음속이 수중에서 매우 느리므로 통신 속도에 제한이 있다. 한편 광무선 통신은 수중 관측이나 해중 모니터링을 위한 요구조건을 충족시킬 수 있는 대안 중의 하나로 제안되었다. 본 연구에서는 블루투스를 이용하여 모선의 통신시스템과 결합할 수 있는 수중 가시광 통신 시스템을 개발하였다. LED 조명통신 시스템과 블루투스의 인터페이스로 수중-수상 통신시스템을 연동할 수 있으며, 수중 3 m 거리에서 230.4 kbps 전송속도로 이미지와 문자를 에러 없이 전송할 수 있음을 보였다. 이러한 노력은 수중 무선 시스템과 수상에서 모니터링을 위한 모선과의 통신을 효과적으로 상호 연결하는 인프라를 강화하는데 기여할 것이다.

Keywords

References

  1. N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, "An integrated, underwater optical/ acoustic communications system," Proceedings of IEEE Conference on Oceans, pp. 1-6, 2010.
  2. S. Arnon, "Underwater optical wireless communication network," Optical Engineering, vol. 49, no. 1, pp. 1-6, 2010. https://doi.org/10.1117/1.OE.49.10.105001
  3. K. R. Sohn, "Performance analysis of the visible light communication in seawater channel", Journal of the Korean Society of Marine Engineering, vol. 37, no. 5, pp. 527-532, 2013 (in Korean). [Online]. Available: http://dx.doi.org/10.5916/jkosme.2013.37.5.527
  4. K. R. Sohn, "A study on the short-range underwater communication using visible LEDs", Journal of the Korean Society of Marine Engineering, vol. 37, no. 4, pp. 425-430, 2013 (in Korean). [Online]. Available: http://dx.doi.org/10.5916/jkosme.2013.37.4.425
  5. Y. J. Kim and K. R. Sohn, "A study on the frequency modulation-based audio transmission system for short-range underwater optical wireless communications," Journal of the Korean Society of Marine Engineering, vol. 36, no. 1, pp. 166-171, 2012 (in Korean). [Online]. http://dx.doi. org/10.5916/jkosme.2012.36.1.166
  6. N. Farr, A. D. Chave, L. Freitag, S. N. White, D. Yoerger, and F. Sonnichsen, "Optical modem technology for seafloor observatories," Proceedings of IEEE Conference on Oceans, pp. 1-6, 2006.
  7. http://www.naka-lab.jp/, Accessed June 09, 2014.
  8. M. Doniec, C. Detweiler, I. Vasilescu, and D. Rus, "Using optical communication for remote underwater robot operation," Proceedings of International Conference on Intelligent Robots and Systems, pp. 4017-4022, 2010.
  9. http://www.ledengin.com/, Accessed June 09, 2014.
  10. K. R. Sohn and M. S. Kim, "LED Transceivers with beehive-shaped reflector for Visible Light Communication," Journal of the Korean Society of Marine Engineering, vol. 38, no. 2, pp. 169-174, 2014 (in Korean). [Online]. Available: http://dx.doi. org/10.5916/jkosme.2014.38.2.169
  11. http://www.osram-os.com/, Accessed August 25, 2014.

Cited by

  1. Implementation of the Equalization Circuits for High Bandwidth Visible Light Communications Using Phosphorescent White LED vol.39, pp.4, 2015, https://doi.org/10.5916/jkosme.2015.39.4.473
  2. A study on indoor visible light communication localization based on manchester code using walsh code vol.39, pp.9, 2015, https://doi.org/10.5916/jkosme.2015.39.9.959
  3. Radio map fingerprint algorithm based on a log-distance path loss model using WiFi and BLE vol.40, pp.1, 2016, https://doi.org/10.5916/jkosme.2016.40.1.62
  4. A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.647