• Title/Summary/Keyword: 음절 복원

Search Result 27, Processing Time 0.02 seconds

Error Correction Methode Improve System using Out-of Vocabulary Rejection (미등록어 거절을 이용한 오류 보정 방법 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.173-178
    • /
    • 2012
  • In the generated model for the recognition vocabulary, tri-phones which is not make preparations are produced. Therefore this model does not generate an initial estimate of parameter words, and the system can not configure the model appear as disadvantages. As a result, the sophistication of the Gaussian model is fall will degrade recognition. In this system, we propose the error correction system using out-of vocabulary rejection algorithm. When the systems are creating a vocabulary recognition model, recognition rates are improved to refuse the vocabulary which is not registered. In addition, this system is seized the lexical analysis and meaning using probability distributions, and this system deactivates the string before phoneme change was applied. System analysis determine the rate of error correction using phoneme similarity rate and reliability, system performance comparison as a result of error correction rate improve represent 2.8% by method using error patterns, fault patterns, meaning patterns.

An Efficient Method for Korean Noun Extraction Using Noun Patterns (명사 출현 특성을 이용한 효율적인 한국어 명사 추출 방법)

  • 이도길;이상주;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.173-183
    • /
    • 2003
  • Morphological analysis is the most widely used method for extracting nouns from Korean texts. For every Eojeol, in order to extract nouns from it, a morphological analyzer performs frequent dictionary lookup and applies many morphonological rules, therefore it requires many operations. Moreover, a morphological analyzer generates all the possible morphological interpretations (sequences of morphemes) of a given Eojeol, which may by unnecessary from the noun extraction`s point of view. To reduce unnecessary computation of morphological analysis from the noun extraction`s point of view, this paper proposes a method for Korean noun extraction considering noun occurrence characteristics. Noun patterns denote conditions on which nouns are included in an Eojeol or not, which are positive cues or negative cues, respectively. When using the exclusive information as the negative cues, it is possible to reduce the search space of morphological analysis by ignoring Eojeols not including nouns. Post-noun syllable sequences(PNSS) as the positive cues can simply extract nouns by checking the part of the Eojeol preceding the PNSS and can guess unknown nouns. In addition, morphonological information is used instead of many morphonological rules in order to recover the lexical form from its altered surface form. Experimental results show that the proposed method can speed up without losing accuracy compared with other systems based on morphological analysis.

Two Statistical Models for Automatic Word Spacing of Korean Sentences (한글 문장의 자동 띄어쓰기를 위한 두 가지 통계적 모델)

  • 이도길;이상주;임희석;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.358-371
    • /
    • 2003
  • Automatic word spacing is a process of deciding correct boundaries between words in a sentence including spacing errors. It is very important to increase the readability and to communicate the accurate meaning of text to the reader. The previous statistical approaches for automatic word spacing do not consider the previous spacing state, and thus can not help estimating inaccurate probabilities. In this paper, we propose two statistical word spacing models which can solve the problem of the previous statistical approaches. The proposed models are based on the observation that the automatic word spacing is regarded as a classification problem such as the POS tagging. The models can consider broader context and estimate more accurate probabilities by generalizing hidden Markov models. We have experimented the proposed models under a wide range of experimental conditions in order to compare them with the current state of the art, and also provided detailed error analysis of our models. The experimental results show that the proposed models have a syllable-unit accuracy of 98.33% and Eojeol-unit precision of 93.06% by the evaluation method considering compound nouns.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

A Study on Error Correction Using Phoneme Similarity in Post-Processing of Speech Recognition (음성인식 후처리에서 음소 유사율을 이용한 오류보정에 관한 연구)

  • Han, Dong-Jo;Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.77-86
    • /
    • 2007
  • Recently, systems based on speech recognition interface such as telematics terminals are being developed. However, many errors still exist in speech recognition and then studies about error correction are actively conducting. This paper proposes an error correction in post-processing of the speech recognition based on features of Korean phoneme. To support this algorithm, we used the phoneme similarity considering features of Korean phoneme. The phoneme similarity, which is utilized in this paper, rams data by mono-phoneme, and uses MFCC and LPC to extract feature in each Korean phoneme. In addition, the phoneme similarity uses a Bhattacharrya distance measure to get the similarity between one phoneme and the other. By using the phoneme similarity, the error of eo-jeol that may not be morphologically analyzed could be corrected. Also, the syllable recovery and morphological analysis are performed again. The results of the experiment show the improvement of 7.5% and 5.3% for each of MFCC and LPC.

  • PDF

Postprocessing of A Speech Recognition using the Morphological Anlaysis Technique (형태소 분석 기법을 이용한 음성 인식 후처리)

  • 박미성;김미진;김계성;김성규;이문희;최재혁;이상조
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.65-77
    • /
    • 1999
  • There are two problems which will be processed to graft a continuous speech recognition results into natural language processing technique. First, the speaking's unit isn't consistent with text's spacing unit. Second, when it is to be pronounced the phonological alternation phenomena occur inside morphemes or among morphemes. In this paper, we implement the postprocessing system of a continuous speech recognition that above all, solve two problems using the eo-jeol generator and syllable recoveror and morphologically analyze the generated results and then correct the failed results through the corrector. Our system experiments with two kinds of speech corpus, i.e., a primary school text book and editorial corpus. The successful percentage of the former is 93.72%, that of the latter is 92.26%. As results of experiment, we verified that our system is stable regardless the sorts of corpus.

  • PDF

Error Correction for Korean Speech Recognition using a LSTM-based Sequence-to-Sequence Model

  • Jin, Hye-won;Lee, A-Hyeon;Chae, Ye-Jin;Park, Su-Hyun;Kang, Yu-Jin;Lee, Soowon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, since most of the research on correcting speech recognition errors is based on English, there is not enough research on Korean speech recognition. Compared to English speech recognition, however, Korean speech recognition has many errors due to the linguistic characteristics of Korean language, such as Korean Fortis and Korean Liaison, thus research on Korean speech recognition is needed. Furthermore, earlier works primarily focused on editorial distance algorithms and syllable restoration rules, making it difficult to correct the error types of Korean Fortis and Korean Liaison. In this paper, we propose a context-sensitive post-processing model of speech recognition using a LSTM-based sequence-to-sequence model and Bahdanau attention mechanism to correct Korean speech recognition errors caused by the pronunciation. Experiments showed that by using the model, the speech recognition performance was improved from 64% to 77% for Fortis, 74% to 90% for Liaison, and from 69% to 84% for average recognition than before. Based on the results, it seems possible to apply the proposed model to real-world applications based on speech recognition.