• Title/Summary/Keyword: 음이온교환

Search Result 359, Processing Time 0.023 seconds

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

Ion Exchange Modeling with Sequencing Chemical Equilibrium (연속화학평형 모델을 이용한 이온교환 모델링)

  • 이인형;안현경
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.306-308
    • /
    • 2002
  • 원자로냉각재계통(Reactor Coolant System) 및 사용 후 저장조정화계통(Spent Fuel Pool Purification System)에는 양ㆍ음이온 교환수지가 충진된 혼상 이온교환수지탑을 설치하여 계통수에 존재하는 방사성 핵종을 제거하고 있으며, 정화율을 나타내는 제염계수(Decontamination Factor)가 특정값 이하이면 수지를 교체하고 있다. 그러나 특정 핵종에 대한 제염계수가 수지 사용기간에 관계없이 기준값 이하로 나타나고 있고, 수지탑의 성능을 예측하고 있지 못하는 실정이다. 원자력발전소 1차 계통에 설치되어 불순물을 제거하는 이온교환 수지탑에 대한 연속화학평형모델에 적용한 결과 수지탑에서 이온 용출은 수지에 대한 이온 선택도 순서와 동일하고 냉각재계통에는 붕산이 주성분이므로 음이온수지에서 붕산이 가장 먼저 누출된다. 그리고 붕산으로 포화된 음이온수지의 음이온 불순물 제거능력은 저하되지 않으며, 리튬으로 포화된 양이온수지의 양이온 불순물 제거능력은 저하된다.

Study on the Preparation of Polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis (알칼리 수전해용 격막으로서 폴리염화비닐(polyvinyl chloride) 음이온교환막의 제조에 관한 연구)

  • Park, Jong-Ho;Bong, Soo-Yeon;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.469-474
    • /
    • 2013
  • An anion exchange membrane was prepared for a separator in the alkaline water electrolysis. An anion exchange membrane was prepared by the chloromethylation and amination of polyvinyl chloride (PVC) used as a base polymer. The membrane properties of the prepared anion exchange membrane such as the membrane resistance and ion exchange capacity were measured. The minimum membrane resistance of the prepared anion exchange membrane was $2.9{\Omega}{\cdot}cm^2$ in 1M NaOH aq. solution. This membrane had 2.17 meq./g-dry-membrane and 43.4% for the ion exchange capacity and water content, respectively. The membrane properties of the prepared anion exchange membrane was compared with that of the commercial anion exchange membrane. The membrane resistance decreased in the order; AHT>IOMAC> Homemade membrane> AHA>APS=AFN. The ion exchange capacity decreased in the order; Homemade membrane>AFN>APS>AHT>AHA>IOMAC.

A Review on Development of PPO-based Anion Exchange Membranes (PPO 기반 음이온 교환막 소재 개발 동향)

  • An, Seong Jin;Kim, Ki Jung;Yu, Somi;Ryu, Gun Young;Chi, Won Seok
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Anion exchange membranes have been used for water electrolysis, which can produce hydrogen, and fuel cells, which can generate electrical energy using hydrogen fuel. Anion exchange membranes operate based on hydroxide ion (OH-) conduction under alkaline conditions. However, since the anion exchange membrane shows relatively low ion conductivity and alkaline stability, there is still a limit to its commercialization in water electrolysis and fuel cells. To address these issues, it is important to develop novel anion exchange membrane materials by rationally designing a polymer structure. In particular, the polymer structure and synthetic method need to be controlled. By doing so, for polymers, the physical properties, ionic conductivity, and alkaline stability can be maintained. Among many anion exchange membranes, poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is commercially available and easily accessible. In addition, the PPO has relatively high mechanical and chemical stability compared to other polymers. In this review, we introduce the recent development strategy and characteristics of PPO-based polymer materials used in anion exchange membranes.

Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/Poly(vinyl alcohol) (가교결합한 Poly((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) 음이온 교환막 제조)

  • Kim, Mi-Yang;Kim, Kwang-Je;Kang, Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.621-626
    • /
    • 2010
  • Anion exchange membranes can be used for reverse electrodialysis for electric energy generation, and capacitive deionization for water purification, as well as electrodialysis for desalination. In this study, anion exchange membranes of poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) were prepared through the polymerization of (vinylbenzyl)trimethylammonium chloride and 2-hydroxyethyl methacrylate in aqueous poly(vinyl alcohol) solutions, esterification with glutaric acid, and cross-linking reaction with glutaraldehyde. We investigated electrochemical properties for the anion exchange membranes prepared according to experimental conditions. Ion exchange capacity and electrical resistance for the membranes were changed with a variation in the monomer ratio in polymerization. Water uptake and conductivity for the membranes decreased with an increase in the content of glutaric acid in esterification. The change in the time of crosslinking reaction with the formed film and glutaraldehyde affected electrochemical properties such as water uptake, conductivity, or transport number for the membranes. Chronopotentiometry and limiting current density for the anion exchange membranes prepared were measured.

Synthesis and Characterization of Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery (전바나듐계 레독스-흐름 전지용 Vinylbenzyl Chloride-co-Styrene-co-Hydroxyethyl Acrylate (VBC-co-St-co-HEA) 음이온교환막의 합성 및 특성)

  • Baek, Young-Min;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.586-592
    • /
    • 2011
  • In this study, we synthesized vinylbenzyl chloride-co-styrene-co hydroxyethyl acrylate (VBC-co-St-co-HEA) copolymer that can be applied to redox the flow battery process. The anion exchange membrane was prepared by the amination and crosslinking of VBC-co-St-co-HEA copolymer. The chemical structure and thermal properties of VBC-co-St-co-HEA copolymer and aminated VBC-co-St-co-HEA(AVSH) membrane were characterized by FTIR, $^1H$ NMR, TGA, and GPC analysis. The membrane properties such as ion exchange capacity(IEC), electrical resistance, ion conductivity and efficiency of all-vanadium redox flow battery were measured. The IEC value, electrical resistance, and ion conductivity were 1.17 meq/g, $1.9{\Omega}{\cdot}cm^2$, 0.009 S/cm, respectively. The charge-discharge efficiency, voltage efficiency and energy efficiency from all-vanadium redox flow battery test were 99.5, 72.6 and 72.1%, respectively.

음이온교환수지를 이용한 백금족 금속의 분리 및 정제 연구(I) - 상용 강염기성 음이온 교환수지의 흡착연구 -

  • 김유선;이성호;안도희;김광락;백승우;강희석;이한수;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.345-349
    • /
    • 1997
  • 고준위 방사성 액체폐기물에서 얻어지는 백금족 금속(Pd, Rh, Ru) 들의 분리 및 정제방법으로 강염기성 음이온교환수지를 사용하여본 결과 상용 수지중에서 Dowex 1 $\times$ 8 이 IRN-78 에 비하여 저 농도의 질산 농도에서 Pd(II) 의 분리 및 정제시 우수한 흡착성을 보여 주었으며 Rh(III) 의 흡착은 Pd(II) 의 것보다 훨씬 낮은 값을 보여 주었다. 이 수지들의 백금족 금속에 대한 흡착성을 문헌에 보고된 실험 결과들과 비교 검토하여 본 바 이온 그룹으로 3급 및 4급 Benzimidazole을 가지는 수지에 비하여 훨씬 낮은 값을 나타내었다. 따라서 실용성이 큰 강염기성 음이온수지로서는 Benzimidazole과 같은 혼합 아민 그룹을 지닌 수지가 가장 접합할 것으로 전망되었다.

  • PDF

The Mixed-Bed Ion Exchange Performance and Temperature Effects at Ultra-Low Concentrations - 2.Temperature Effects - (초저이온 농도범위에서 혼합층 이온교환능과 온도의 영향 - 2. 온도의 영향 -)

  • Yoon, Tae Kyung;Noh, Byeong Il;Lee, Chang Won;Moon, Byung Hyun;Lee, Gang Choon;Jo, Myung Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.206-211
    • /
    • 1999
  • Mixed-bed ion exchange performance was studied experimentally with variations of cation to anion resin ratio, resin weight and temperature at ultralow sodium chloride solution concentrations of less than $1.0{\times}10^{-4}M$. Analyzing the effluent concentration histories the performance test was examined as a function of tested solution volume for a laboratory-scale continuous flow column until both the cation and anion-exchange resins were exhausted. Initial leakage was observed for both cation and anion breakthrough curves, but serious at cation breakthrough curve because of low selectivity coefficient. The slope of breakthrough curve was affected by selectivity coefficient and temperature. The slope of anion breakthrough curve was steep because of the large selectivity coefficient, and ion exchange rates increased as temperature increased. The temperature effect decreased as the total volume was increased or as the resins were exhausted.

  • PDF

Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) Anion Exchange Membrane (질산성 질소 제거용 Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) 음이온교환막 제조와 관능화 조건)

  • Oh, Chang Min;Hwang, Taek Sung
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.157-164
    • /
    • 2015
  • In this study, we synthesized poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) (PVTD) copolymer and introduced functional group through quaternization reaction for removing nitrate from drinking water. Also, optimizing conditions (reaction time, reaction temperature and functionalized agents concentration) for introducing the functional group were confirmed. The basic properties such as water uptake, swelling ratio, electrical resistance, ion exchange capacity and anion permselectivity for removing nitrate from drinking water were measured. The optimal values of water uptake, electrical resistance and ion exchange capacity of synthesized anion exchange membrane were 51.2%, $5.4{\Omega}{\cdot}cm^2$, and 1.04 meq/g, respectively.

Crosslinking of Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes (폴리페닐렌 옥사이드 음이온 교환막의 가교결합)

  • Lee, Seung-Gwan;Kim, Mi-Yang;So, Won-Wook;Kang, Kyung-Seok;Kim, Kwang-Je
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.326-331
    • /
    • 2018
  • Crosslinking of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) anion exchange membranes, which can be used for capacitive deionization (CDI), was investigated. PPO Anion exchange polymer was prepared through bromination and amination reaction steps and crosslinked with bisphenol A diglycidylether (BADGE), m-phenylenediamine (m-PDA), and hexamethylenediamine (HMDA). The gelation time by crosslinking was short in the order of HMDA > m-PDA > BADGE. The anion exchange membranes crosslinked at room temperature over a certain amount of crosslinking agent did not dissolve in an aprotic solvent such as 1-methylpyrrolidone (NMP) and the chemical durability of their membranes to organic solvent increased. The ion exchange capacity and water uptake of anion exchange membranes crosslinked with different crosslinker (BADGE) contents were measured and compared. The CDI performance of the crosslinked PPO anion exchange membrane immersed in the HMDA solution was almost the same as that of the non - crosslinked membrane except for the initial stage of the adsorption step.