• Title/Summary/Keyword: 음의 전기비저항

Search Result 23, Processing Time 0.019 seconds

Effects of the Integrity of Silicon Thin Films on the Electrical Characteristics of Thin Dielectric ONO Film (실리콘 박막의 Integrity가 ONO(Oxide/Nitride/Oxide) 유전박막의 전기적 성질에 미치는 영향)

  • 김동원;라사균;이영종
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.360-367
    • /
    • 1994
  • Si2H6PH3 혼합기체를 사용하여 증착된 in-situ P-doped 비정질 실리콘과 SiH4 기체를사용하여 증착한후에 As+ 이온주입에 의해 도핑시킨 다결정 실리콘 박막을 하부 전극으로 하는 캐패시터를 형성 하였다. 여기서 유전박막층은 자연산화막 화학증착된 실리콘질화막 및 질화막의 산화에 의해 형성된 O-N-O 구조를 갖는 것이었다. 두 종류의 하부전극에 따른 캐패시터의 전기적 특서을 조사하였다. 전기 적 특성으로는 정전용량, 누설전류, 절연파괴전압 및 TDDB 등이었다. 이 가운데 정전용량, 누설전류 및 절연파괴전압은 하부전극에 따라 큰 차이를 보이지않았다. 그러나 음의 전장하에서의 TDDB 특성은 in-situ P-doped 비정실 실리콘이 하부전극인 캐패시터가 As+ 이온 주입실리콘이 하부전극인 것에 비해 더우수하였다. 이와 같은 TDDB 특성의 차이는 하부전극 실리콘의 integrity 차이로 인한 자연산화막의 결함 정도의 차이에 기인하는 것 같다. 이를 뒷받침하는 것으로 투과전자현미경 단면사진으로 확인하였 다. Shallow junction을 유지하는데도 in-situ P-doped 비정실 실리콘은 만족할 만한 결과를 보이며 박 막자체의 면저항값도 낮출 수 있어 초고집적 회로의 캐패시터 전극으로서 이용될 수 있는 것으로 평가 되었다.

  • PDF

Electrical and Magnetic Properties of Tunneling Device with FePt Magnetic Quantum Dots (FePt 자기 양자점 터널링 소자의 전기적 특성과 자기적 특성 연구)

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • We have studied the electrical and magnetic transport properties of tunneling device with FePt magnetic quantum dots. The FePt nanoparticles with a diameter of 8~15 nm were embedded in a $SiO_2$ layer through thermal annealing process at temperature of $800^{\circ}C$ in $N_2$ gas ambient. The electrical properties of the tunneling device were characterized by current-voltage (I-V) measurements under the perpendicular magnetic fields at various temperatures. The nonlinear I-V curves appeared at 20 K, and then it was explained as a conductance blockade by the electron hopping model and tunneling effect through the quantum dots. It was measured also that the negative magneto-resistance ratio increased about 26.2% as increasing external magnetic field up to 9,000 G without regard for an applied electric voltage.

Origin of Variation of the Initial Permeability of Manganese-Zinc Ferrite Polycrystals with Additives (Mn-Zn 페라이트 다결정의 첨가물에 따른 초투자율의 변화 기구)

  • Byeon, Sun-Cheon;Byeon, Tae-Yeong;Go, Gyeong-Hyeon;Hong, Guk-Seon
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.758-762
    • /
    • 1997
  • 52mol% Fe$_{2}$O$_{3}$, 26mol% MnO의 조성에서 calcium과 vanadium의 동시첨가에 의한 투자율의 변화원인을 살펴보았다. 초투자율은 첨가물의 농도가 커짐에 따라 감사하였으나 소결체의 밀도나 입자크기는 증가하였으므로 초투자율의 변화는 미세구조의 변화로는 설명되지 않았다. 전기비저항은 첨가물의 농도가 증가함에 따라 증가하였으며 이는 입계의 고저항층의 생성과 vanadium ion에 의한 Fe$^{2+}$이온의 산화로 설명되었다. 첨가물의 농도가 증가함에 따라, 초투자율의 제 2차 최대치가 나타나지 않는 것과 초투자율이 감소하는 것으로부터, 결정자기이방성 상수의 값은 음으로 커짐을 알 수 있었다. 투자육의 온도의존성과 비저항의 변화로부터, 첨가물의 농도에 따른 상온 초투자율의 감소는 Fe$^{2+}$ 이온 농도의 감소에 따른 결정자기이방성 상수의 증가에 의한 효과와 입계에 유리질이 생겨 자벽이 쉽게 이동하지 못하는 효과 때문인 것으로 판단되었다.

  • PDF

Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam (사력댐 누수경로 파악을 위한 수리지질과 지구물리 방법의 적용)

  • Song Sung-Ho;Song Yoonho;Kwon Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.92-96
    • /
    • 2005
  • Comprehensive field surveys, including various hydrogeological and geophysical methods, were carried out to appraise the applicability of those methods to a leakage problem at the Sandong earth fill dam in southwestern Korea. The methods applied in the fold site were tracer tests, monitoring of drawdown and leakage with discharge of reservoir water, electrical resistivity surveys using the dipole-dipole array, self-potential (SP), and temperature logging methods. The leakage pattern in the reservoir wall was demonstrated by hydrogeological methods and was further clarified by the geophysical surveys. Leakage turned out to be through the right abutment of the reservoir wall. In this study, we conformed that the electrical resistivity method is effective in detecting the zones favorable to leakage, and SP methods are useful for delineating the leakage pathways themselves, because leaks generate strong streaming-potential anomalies.

Application of Spectral Induced Polarization Method for Skarn Metallic Deposits Exploration (스카른 금속광상 탐사를 위한 광대역 유도분극법 적용성)

  • Park, Samgyu;Shin, Seung Wook;Son, Jeong-Sul;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2016
  • The development of more advanced geophysical exploration techniques is necessary because the orebodies as yet discovered are increasingly changing in characteristics from shallow/high-grade to deep/low-grade. In this work, laboratory measurement of physical properties of rock samples and a field survey and interpretation of spectral induced polarization (SIP) have been conducted in a skarn metallic deposit, Gagok mine. The purpose of this study is that the applicability of SIP in the exploration of skarn metallic deposits is verified by the comprehensive interpretation between SIP characteristics of rocks obtained from the laboratory measurements and inverted survey results from the field data. In order to understand the SIP characteristics of each lithology, the data of eighty nine rock samples utilized in the previous studies were revaluated. The field survey was carried out using frequency of 0.25 Hz along a survey line designed for intersecting lithological boundaries and evaluating mineralized zones. The mineralized rocks were more conductive (low-resistivity) and capacitive (high-chargeability or strong-phase) than other rocks. Thus, SIP can be one of the very useful tools for the mineral exploration of the skarn deposits.

Thermoelectric Properties of the Hot-Pressed n-Type PbTe with the Powder Processing Method (분말 제조공정에 따른 n형 PbTe 가압소결체의 열전특성)

  • Choi, Jae-Shik;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.245-251
    • /
    • 1998
  • Bi-doped n-type PbTe thermoeletric materials were fabricated by mechanical alloying and hot pressing. The intering characteristics and thermoelectric properties of the hot- pressed PbTe were characterized and compared with the properties of the specimens prepared by meltingigrinding method. The hot-pressed PbTe specimens fabricated by mechanical alloying exhibited more negative Seebeck coefficient, higher electrical resistivity and lower thermal conductivity. compared to ones prepared by meltingigrinding. The maximum figure-of-merit increased and the temperature for the maximum figure-of-merit shifted to lower temperature for the specimens fabricated by mechanical alloying. When hot pressed at $650^{\circ}C$, 0.3 wt% Bi-doped PbTe fabricated by mechanical alloying and meltingjgrinding exhibited maximum figure-of-merits of $1.33\times10^{-3}/K$ at $200^{\circ}C$ and $1.07\times10^{-3}/K$ at $400^{\circ}C$ respectively.

  • PDF

The Effect of Magnetic Field Annealing on the Structural and Electromagnetic Properties of Bising $Co_{82}Zr_6Mo_{12}$ Thin Films for Magnetoresistance Elements (자기저항소자의 바이어스용 $Co_{82}Zr_6Mo_{12}$ 박막의 구조 및 전자기적 특성에 미치는 자장 중 열처리의 영향)

  • 김용성;노재철;이경섭;서수정;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.111-120
    • /
    • 1999
  • The effects of annealing in rotating magnetic field after deposition on electromagnetic properties of $Co_{82}Zr_6Mo_{12}$ thin (200~1200 $\AA$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity decreases, but $4{\pi}M_5$ does not change with increasing the film thickness. The coercivity of the films was decreased below 300 $^{\circ}C$ due to stress relief and decreasing the surface roughness, while increased at 400 $^{\circ}C$ due to partial grain growth. And then, $4{\rho}M_5$ was almost independent of annealing temperatures below 200 $^{\circ}C$, but increased from 7.4 kG to 8.0 kG at 300 $^{\circ}C$ and at 400 $^{\circ}C$, which was caused by precipitation and growth of fine Co particles in the films. The electrical resistivity of films was decreased with increasing annealing temperatures and the magnetoresistance was a negative value of nearly 0 $\mu$$\Omega$cm. After annealing at 300 $^{\circ}C$, maximum effective permeability was 1200 to the hard axis of the thin films according to high frequency change. Considering the practical application of biasing layers of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at 300 $^{\circ}C$ in 400 Oe rotating magnetic field.

  • PDF

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.

Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10의 Small polaron Hopping 전도)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.294-298
    • /
    • 2002
  • Polycrystalline $La_{2.1}Sr_{1.9}Mn_3O_{10}$ with layered perovskite structure have been successfully synthesized and investigated with respect to their thermoelectric, electric and magnetic properties. The large magnetoresistance (MR) effect with $-{\Delta}{\rho}/{\rho}_0$ of ∼120% at 0.85T was observed in a wide temperature range below a cusp temperature in resistivity of about 120K, which is well below the magnetic $T_C$. At high temperature, a singnificant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polaron, is observed. All of the experimental data can be well explained on the basis of the small polaron model.

Formation of Ferromagnetic Ge3Mn5 Phase in MBE-grown Polycrystalline Ge1-xMnx Thin Films (다결정 Ge1-xMnx 박막에서 Ge3Mn5 상의 형성과 특성)

  • Lim, Hyeong-Kyu;Anh, Tran Thi Lan;Yu, Sang-Soo;Baek, Kui-Jong;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • Magnetic phases of polycrystalline $Ge_{1-x}Mn_x$ thin films were studied. The $Ge_{1-x}Mn_x$ thin films were grown at $400^{\circ}C$ by using a molecular beam epitaxy. The $Ge_{1-x}Mn_x$thin films were p-type and electrical resistivities were $4.0{\times}10^{-2}{\sim}1.5{\times}10^{-4}ohm-cm$. Based on the analysis of magnetic characteristics and microstructures, it was concluded that the ferromagnetic phase formed on the $Ge_{1-x}Mn_x/SiO_2$/Si(100) thin films was $Ge_3Mn_5$ phase which has about 310 K of Curie temperature. Moreover, the $Ge_{1-x}Mn_x$ thin film which had $Ge_3Mn_5$ phase showed the negative magnetoresistance to be about 9% at 20 K when the magnetic field of 9 T was applied.