• 제목/요약/키워드: 음성 특징

검색결과 1,123건 처리시간 0.027초

음성 에너지 분포 처리와 에너지 파라미터를 융합한 음성 인식 성능 향상 (Voice Recognition Performance Improvement using a convergence of Voice Energy Distribution Process and Parameter)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제13권10호
    • /
    • pp.313-318
    • /
    • 2015
  • 전통적인 음성 향상 방법은 잘못된 잡음의 추정에 따라 남아있는 잡음이 발생하여 음성 스펙트럼을 왜곡하거나 음성 프레임을 찾지 못하여 음성 인식 성능을 저하시키는 문제가 발생된다. 본 논문에서는 음성 에너지 분포 처리와 음성 에너지 파라미터를 융합한 음성 검출 방법을 제안하였다. 제안한 방법은 음성 에너지를 최대화시켜 잡음의 영향을 적게 받는 특성을 이용하였다. 또한, 음성 신호의 특징 파라미터 중에서 작은 값을 가지는 로그에너지 특징의 구간에서는 큰 에너지를 가지는 구간에 비해 상대적으로 로그에너지 값을 더 많이 키워서 잡음이 포함한 음성신호의 로그에너지 특징의 크기와 비슷하게 하여 훈련과 인식 환경의 불일치를 융합으로 인해 줄여준다. 인식 실험 결과 기존 방법에 비해 향상된 인식 성능을 확인할 수 있었으며, car 잡음 환경의 음성 구간 적중률은 낮은 SNR구간인 0dB과 5dB에서는 97.1%와 97.3%의 정확도를 보였으며, 높은 SNR구간인 10dB와 15dB에서는 98.3%, 98.6%의 정확도를 보였다.

바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델 (Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.199-204
    • /
    • 2013
  • 음성 인식 시스템은 정확하지 않게 입력된 음성으로부터 학습 모델을 구성하고 유사한 음소 모델로 인식하기 때문에 인식률 저하를 가져온다. 따라서 본 논문에서는 바타차랴 알고리즘을 이용한 음성 인식 최적 학습 모델 구성 방법을 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식할 수 있도록 하였다. 바타챠랴 알고리즘을 이용하여 최적의 학습 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 음성 인식률에서 98.7%의 인식률을 나타내었다.

독립성분분석을 이용한 DSP 기반의 화자 독립 음성 인식 시스템의 구현 (Implementation of Speaker Independent Speech Recognition System Using Independent Component Analysis based on DSP)

  • 김창근;박진영;박정원;이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.359-364
    • /
    • 2004
  • 본 논문에서는 범용 디지털 신호처리기를 이용한 잡음환경에 강인한 실시간 화자 독립 음성인식 시스템을 구현하였다. 구현된 시스템은 TI사의 범용 부동소수점 디지털 신호처리기인 TMS320C32를 이용하였고, 실시간 음성 입력을 위한 음성 CODEC과 외부 인터페이스를 확장하여 인식결과를 출력하도록 구성하였다. 실시간 음성 인식기에 사용한 음성특징 파라메터는 일반적으로 사용되어 지는 MFCC(Mel Frequency Cepstral Coefficient)대신 독립성분분석을 통해 MFCC의 특징 공간을 변화시킨 파라메터를 사용하여 외부잡음 환경에 강인한 특성을 지니도록 하였다. 두 가지 특징 파라메터에 대해 잡음 환경에서의 인식실험 결과, 독립성분 분석에 의한 특징 파라메터의 인식 성능이 MFCC보다 우수함을 확인 할 수 있었다.

음성신호의 최적특징을 적응적으로 추출하는 방법에 관한 연구 (A Study on the Adaptive Method for Extracting Optimum Features of Speech Signal)

  • 장승관;차태호;최웅세;김창석
    • 한국통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.373-380
    • /
    • 1994
  • 본 논문에서는 음성신호를 일정한 크기로 적응시켜 최적의 특징을 추출할 수 있는 방법을 제안하였다. 음성신호의 특징을 추출하기 위하여 고속선형예측 알고리즘인 FRLS 적용할 때 음성신호를 일정한 크기로 분할한 후 각 프레임 마다 제안한 균등사기상관함수를 가지고 최적특징을 추출하였다.

  • PDF

응급구조 음향데이터 분석을 위한 Gabor 필터뱅크 기반의 특징추출 알고리즘에 대한 연구 (A study on Gabor Filter Bank-based Feature Extraction Algorithm for Analysis of Acoustic data of Emergency Rescue)

  • 황인영;장준혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1345-1347
    • /
    • 2015
  • 본 논문에서는 응급상황이 신고되는 상황에서 수보자에게 전달되는 신고자의 주변음향신호로부터 신고자의 주변상황을 추정하기 위하여 음향의 주파수적 특성 및 변화특성의 모델링 성능이 뛰어난 Gabor 필터뱅크 기반의 특징벡터 추출 기술 및 분류 성능이 뛰어난 심화신경망을 도입한다. 제안하는 Gabor 필터뱅크 기반의 특징벡터 추출 기법은 비음성 구간 검출기를 통하여 음성/비음성을 구분한 후에 비음성 구간에서 23차의 Mel-filter bank 계수를 추출한 후에 이로부터 Gabor 필터를 이용하여 주변상황 추정을 위한 특징벡터를 추출하고, 이로부터 학습된 심화신경망을 통하여 신고자의 장소적 정보를 추정한다. 제안된 기법은 여러 가지 시나리오 환경에서 평가되었으며, 우수한 분류성능을 보였다.

입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발 (Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region)

  • 김기백;유제웅;조남익
    • 방송공학회논문지
    • /
    • 제17권3호
    • /
    • pp.519-528
    • /
    • 2012
  • 음성구간을 검출하는 일반적인 방법은 음향신호로부터 특징값을 추출하여 판별식을 거치는 것이다. 그러나 잡음이 많은 환경에서 그 성능은 당연히 저하되며, 이 경우 영상신호를 이용하거나 영상과 음성을 동시에 사용함으로써 성능향상을 도모할 수 있다. 영상신호를 이용하여 음성구간을 검출하는 기존 방법들에서는 액티브 어피어런스 모델, 옵티컬 플로우, 밝기 변화 등 주로 하나의 특징값을 이용하고 있다. 그러나 음성구간의 참값은 음향신호에 의해 결정되므로 한 가지의 영상정보만으로는 음성구간을 검출하는데 한계를 보이고 있다. 본 논문에서는 입술 영역의 옵티컬 플로우와 밝기 변화 두 가지 영상정보로부터 특징값을 추출하고, 추출된 특징값들을 결합하여 음성구간을 검출하는 알고리즘을 제안하고자 한다. 또한, 음성구간 검출 알고리즘이 다른 시스템의 전처리로 활용되는 경우에 적은 계산량만으로 수행되는 것이 바람직하므로, 통계적 모델링에 의한 방법보다는 추출된 특징값으로부터 간단한 대수적 연산만으로 스코어를 산정하여 문턱값과 비교하는 방법을 제안하고자 한다. 입술 영역 검출을 위해서는 얼굴에서 가장 두드러진 특징점을 갖는 눈을 먼저 검출한 후, 얼굴의 구조와 밝기값을 이용하는 알고리즘을 제안하였다. 실험 결과 본 논문에서 제안하는 두 가지 특징값을 결합한 음성구간 검출 알고리즘이 하나의 특징값만을 이용했을 때보다 우수한 성능을 보임을 확인할 수 있다.

청각 환경이 구강안면 통증환자의 음성 파라미터에 미치는 영향 (The Effect of Auditory Condition on Voice Parameter of Orofacial Pain Patient)

  • 이주영;백광현;홍정표
    • Journal of Oral Medicine and Pain
    • /
    • 제30권4호
    • /
    • pp.427-432
    • /
    • 2005
  • 본 연구는 구강안면통증 환자의 음성적 특징과 청각 환경에 따른 음성적 변화를 살펴보기 위한 것이다. 구강안면통증 환자 29명과 정상인 31명을 대상으로 그들의 일반 음성과 청각 조건(소음, 음악)에서의 음성 파라미터들을 비교 분석하여 다음과 같은 결론을 얻을 수 있었다. 1. 구강안면통증 환자는 정상인의 음성과 비교해 낮은 F0(Hz) 값과 높은 jitter(%), shimmer(%)값을 가져 정상인에 비해 낮고 불안정한 음성 특징(feature)을 나타내었다. 2. 구강안면통증 환자의 음성은 소음 환경과 비교해 음악 환경에서 낮은 F0(Hz)값과 shimmer(%)값을 가져 보다 이완되고 안정된 음성 특징을 나타내었다. 3. 정상인의 음성은 소음 환경에서 높은 F0(Hz)값을 가졌으나 음악, 소음 환경에 따른 특징적인 차이를 나타내지 않았다. 이상의 결과를 통해 구강안면통증 환자는 정상인의 음성과 비교해 특징적인 차이를 보였으며 외부적인 청각 환경에도 다른 반응 양상을 나타내었다. 따라서 구강안면통증 환자들의 기능적 장애를 보다 효율적으로 치료하기 위해서는 음악과 같은 긍정적인 정서 환경이 제공되어야 할 것으로 사료된다.

시간가중치의 로버스트 칼만필터를 이용한 음성분석 (Speech analysis using the Robust Time-Weighted Kalman filtering)

  • 최홍섭;안수길
    • The Journal of the Acoustical Society of Korea
    • /
    • 제11권1E호
    • /
    • pp.73-78
    • /
    • 1992
  • 시벼형 신호인 음성 신호의 분석에 칼만필터를 이용하였다. 일반적인 음성 분석은 프레임단위의 처리방법인 선형 예측 부호화 기법을 주로 이용하지만 음성의 시변 특성을 파악하는데에는 적절하지 못 하다. 따라서 순차적인 추정기법으로 많이 이용되는 칼만 필터를 음성 분석에 적용하였다. 또한 음성과 같은 시변신호에서는 과거 신호의 잡음의 분산값에 적당한 가중치를 부가하므로써 과거의 신호에 의해 서 현재의 추정값에 미치는 영향을 줄였으며 이를 음성의 천이 구간에서의 파라메타 추정에 사용하였 다. 그리고 음성신호 모델에서 생기는 모델링 오차는 일반적으로 백색 가우시안 잡음으로 가정하고 있 으나 이는 자음과 같은 무성음에서 특징 파라메타 푸정에는 오차가 적지만 모음등의 유성음에서는 음성 발생시의 여기신호인 펄스열에 의해서 많은 모델링 오차를 생기게 한다. 따라서 모델링 오차신호는 Non-Gaussian 확률분포로 가정한 후 로버스트 칼만 필터를 사용하여 합성으멩 대해 특징 파라메터를 추출하였다.

  • PDF

다양한 특징 파라미터와 선형변별분석을 이용한 후두암의 선별검사

  • 이원범;왕수건;권순복;전경명;전계록;김수미;김형순;양병곤;조철우
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.149-149
    • /
    • 2003
  • 후두질환 감별용 음성 분석방법인 multi-dimensional voice program (MDVP)으로 분석이 불가능할 정도로 주기성이 크게 훼손된 후두암 말기의 음성 에 대하여 효과적인 감별을 하기 위하여, 몇 가지 켑스트럼(cepstrum) 파라미터를 비롯하여, 주기성 및 그 동요 정도, 영교차율(zero-crossing rate, ZCR), 스텍트럼 중심 (spectral centroid, SC) 등 다양한 특징 파라미터를 이용한 감별 실험을 수행하였다. 후두암 감별 실험을 위해 부산대학교 병원 이비인후과에서 수집한 정상 남자 음성 데이터 50개, 양성 후두질환 남자 음성 데이터 50개 및 남성 후두암 환자 음성 데이터 105개를 사용하였다. 음성 데이터는 단모음 /아/ 발성만을 사용하였고, 정상인과 양성후두질환 환자, 그리고 MDVP 분석이 가능한 후두암 환자 음성 데이터 중 2/3는 학습에, 나머지 113은 감별실험에 사용하였다. 후두암 감별을 위한 분류기로는 Gaussian Mixture Model(GMM) 분류기를 사용하였으며, 이때 모델의 복잡도를 표현하는 mixture 수는 1에서 10까지 가변시키면서 가장 좋은 성능을 나타내는 값으로 결정하였다. 또한 모든 실험에서 켑스트럼 분석의 차수는 동일하게 12차로 고정시켰다. (중략)

  • PDF

독립성분분석을 이용한 강인한 화자인식 (Robust Speaker Recognition using Independent Component Analysis)

  • 장길진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.327-330
    • /
    • 1998
  • 독립성분분석(ICA: Independent Component Analysis)이란 특징이 상이한 둘 이상의 신호들이 선형적으로 결합되어 있을 때 이를 효과적으로 분리하는 방법들을 통칭하며 잡음제거, 음질개선 및 신호처리 분야에서 많이 활용되고 있다. 본 논문에서는 전화음성 화자인식 시스템의 성능향상을 위해 독립성분분석을 이용하는 방법을 제안한다. 먼저 화자가 발성한 음성신호의 켑스트럼 계수를 여러 채널 함수들의 선형적인 합으로 가정하고, 독립성분분석을 이용하여 얻은 새로운 켑스트럼 벡터를 학습과 인식에 사용하였다. 실험자료는 잔화음성 화자식별기의 성능평가에 널리 쓰이고 있는 SPIDRE를 사용하였고 regodic 은닉 마코프 모델을 이용하여 문장 독립 화자식별 시스템을 구성하였다. 학습음성의 특징과 실험음성의 특징이 다른 조건에서 기존의 채널 정규화 방법들에 비해 10~15%이상 인식률이 향상되었다.

  • PDF