본 논문에서는 인식 단위로서의 개개의 은닉 마코프 모델 (HMM: Hidden Markvo Model)에 대응하는 가중치를 도입하여 HMM출력 스코어는 HMM출력 확률과 HMM 가중치의 곱으로 표현된다고 가정하고 기존의 최소 분류 오류 훈련 방법과 유사하게 HMM 가중치를 반복적으로 훈련하는 방법을 제안하였다. 제안된 방법은 오인식 척도에 대해 차분 (delta) 계수를 정의하고 이를 이용하여 HMM 가중치를 반복하여 훈련하는 방법이다. 이러한 방법은 HMM 가중치의 합을 HMM 개수의 총합으로 제한함으로써 기존의 파라미터 추정 방법과 비터비 (Viterbi) 알고리즘에 큰 변화 없이 음성 인식에 효과적으로 적용될 수 있다. 제안된 방법은 기존의 분할 (segmental) 최소 분류 오류훈련 방법과 비교하여 추정하는 파라미터의 개수가 감소되었으며 훈련 모델의 최적 상태열을 이용한 경도 계산 과정이 포함되지 않음으로써 계산량을 효과적으로 단축할 수 있다. HMM가중치를 이용한 HMM기반의 음성 인식기의 성능 평가를 위해서 단독 숫자음 인식 실험을 실시하였다. 실험적 결과들은 HMM 확률 보정을 이용한 음성 인식 시스템이 베이스라인 시스템보다 음성 인식 성능이 더 우수함을 보여준다. 제안된 방법은 기존의 최소 분류 오류 훈련 방법에 비하여 구현하기 간편한 반면에 더욱 우수한 음성 인식 성능 향상을 보여준다.
이 논문은 일본의 호리따씨가 1983년 8월 고베시에서 열린 제4차 세계음성학자 대회에서 발표한 내용의 영역본이다. "음성언어의 직감적 개발"이란 부제가 붙은 "위이훠 방법"이란 호리따씨가 개발해 낸 농아와 그 밖의 언어장애자의 발음 훈련 및 교정법인데, 혀의 감각이 둔한 장애자의 혀에 종이같이 얇은 고자 조각을 붙여서 발음하게 함으로써 정확한 조음 위치를 파악하여 올바른 발음을 익히도록 하는 방법이다. 대회에서도 상당한 관심을 끈 논문이므로 우리나라의 언어치료계를 위하여 소개한다. 이 방법은 음성훈련 및 외국어의 발음교육에도 이용될 수 있을 듯 하다.
본 연구는 음성을 예술적 표현 수단의 매개체로 사용하는 배우의 연기 예술에서 음성 기관의 독립적인 조절, 제어를 가능하게 하는 에스틸 보이스 트레이닝(Estill Voice Training) 모델의 이론적 원리와 구조연습 훈련이 배우 음성 운용에 적용될 수 있는 긍정적 효용성을 탐구하는 데 그 목적이 있다. 생성기관의 원리에 기인하여 음성 산출물의 상이점을 조절하는 음성 과학적 방법론에 대한 연구는 심리와 신체를 함께 아우르는 기존의 배우 음성 훈련에 비해 국내에서 활발히 소개되지 못하고 있는 현실이다. 음성은 해부 생리학을 근간으로 우리 몸에 대한 이해가 선행될 때 운용의 정확성과 안정성을 담보할 수 있을 뿐만 아니라 더 나아가 인물 창조의 요소인 인물의 음성적 성격화에도 기여할 수 있다. 배우 음성 훈련에서 자기 수용적 감각을 통한 훈련 모델을 고찰하는 것은 배우가 일련의 목표음을 산출하는 과정에서 원리적이며 실질적인 방법론으로 모색될 수 있다는 실용적 가치와 대안적 의의를 지닌다.
최근에 음성언어장애에 대한 언어치료사의 평가 및 치료 활동이 활발히 이루어지고 있으나, 음성평가 기준 및 치료 자료가 충분치 않은 것이 현실이다. 음성 평가를 실시할 때에도 각 치료실마다 음성 평가에 사용하는 장비가 달라 결과물의 해석에 다소 차이가 있으며, 또한 같은 장비를 사용함에도 불구하고 음성 자료를 수집하는 방법에 있어서 표준화된 절차 및 자료에 따라 평가를 하지 못하고 있는 실정이다. 이러한 표준화된 측정절차에 대한 요구는 개인적인 기준으로 좌우될 수 있는 주관적인 평가에서는 더욱 절실하다. 음성의 지각적 평가에서 중요한 측면 중에 하나는 음성의 질에 정확한 판단 및 이에 대한 자료공유 및 정보교환이다. 현재 음성의 질에 대한 측정평가를 위해 제일 많이 사용되고 있는 방법 중 하나가 GRBAS 방법이 간편하여 임상적으로 많이 사용하나 음성의 질에 대한 세밀한 평가를 하는 데는 한계가 있다. 따라서 본 연구에서는 음질을 평가하는데 있어서 자주 사용되는 음질 용어에 대한 우리말 용어를 통일의 필요성의 시급한 실정에 기초하여 이를 대표할 수 있는 음성샘플 자료의 구축마련을 위한 일종의 발제이다. 이러한 작업을 통해 각 음성 및 언어치료실에서 음성의 질에 대한 청지각적 평가에 공통 기준을 마련하고, 임상교육 적인 목적으로 청지각적 훈련 자료로 이용이 가능할 수 있으리라 사료된다. (중략)
통신 수단의 발달로 휴대단말기의 사용이 증가하고 있으며, 이와 함께 휴대단말기에서의 음성인식에 대한 수요도 증가하고 있다. 휴대단말기의 경우 저 전송율을 가지는 음성 부호화기를 사용하게 되며, 이러한 저전송율의 음성 부호화기에서의 음성인식을 수행할 경우 인식 성능이 저하되는 현상을 보이게 된다. 본 논문에서는 이러한 문제를 해결하기 위하여 LSP 파라메터 기반의 거리척도에 관하여 비교 검토하였으며, 적은 훈련 데이터에서 사용 가능한 화자 종속 음성인식 방법으로 Dynamic Time Warping(DTW)과 변형된 Hidden Markov Model(HMM)에 관하여 검토하였다. QCELP 음성 부호화기에서 인식 어휘 당 2번의 훈련 데이터만을 이용한 화자종속 인식방법을 사용한 결과 95% 이상의 인식 성능을 얻을 수 있었다.
본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.
어린이 음성인식의 활용 분야가 증가하고 있지만, 양질의 데이터 부족은 어린이 음성인식 성능 향상의 걸림돌이 되고 있다. 본 논문은 성인의 음성 데이터를 추가로 사용하여 어린이 음성인식 성능을 개선하는 방법을 새롭게 제안한다. 제안하는 방법은 성인 학습 데이터양이 증가할수록 커지는 연령 간 데이터 불균형을 효과적으로 다루기 위해 dynamically weighted loss를 사용하여 트랜스포머 기반 도메인 적대적 훈련하는 방식이다. 구체적으로, 학습 중 미니 배치 내 클래스 불균형 정도를 수치화하고, 데이터가 적을수록 큰 가중치를 갖도록 손실함수를 정의하여 사용하였다. 실험에서는 성인과 어린이 학습 데이터 간 비대칭성에 따른 제안된 도메인 적대적 훈련의 효용성을 검증하였다. 실험 결과, 학습 데이터 내 연령 간 비대칭이 발생하는 모든 조건에서 제안하는 방법이 기존 도메인 적대적 훈련 방식보다 높은 어린이 음성인식 성능을 가짐을 확인할 수 있었다.
본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.
본 논문은 일본어 음성인식기 신규 개발을 위해 초기에 부족한 일본어 음성데이터를 보완하는 방법이다. 일본어 발음과 한국어 발음이 유사한 특성을 근거로 한국어 음성 데이터를 이용한 일본어 음향모델 성능개선 방법에 대하여 기술하였다. 이종언어 간 음성 데이터를 섞어서 훈련하는 방법인 Cross-Language Transfer, Cross-Language Adaptation, Data Pooling Approach등 방법을 설명하고, 각 방법들의 시뮬레이션을 통해 현재 보유하고 있는 일본어 음성데이터 양에 적절한 방법을 선정하였다. 기존의 방법들은 훈련용 음성데이터가 크게 부족한 환경에서의 효과는 검증되었으나, 목적 언어의 데이터가 어느 정도 확보된 상태에서는 성능 개선 효과가 미비하였다. 그러나 Data Pooling Approach의 훈련과정 중 Tyied-List를 목적 언어로만으로 구성 하였을 때, ERR(Error Reduction Rate)이 12.8 %로 성능이 향상됨을 확인하였다.
훈련과정과 인식과정에서의 주변환경 잡음과 채널 특성 등의 불일치는 음성인식 성능을 급격히 저하시킨다. 이러한 불일치를 보상하기 위해서 켑스트럼 영역에서의 다양한 전처리 방법이 시도되고 있으며 최근에는 stereo 데이터와 잡음 음성의 Gaussian Mixture Model (GMM)을 이용해 보상벡터를 구하는 SPLICE 방법이 좋은 결과를 보이고 있다(1). 기존의 SPLICE가 전체 발성에 대해서 음향학적인 정보만으로 Gaussian 모델을 구하는 반면 본 논문에서는 발성에 해당하는 음소정보를 고려하여 전체 음향 공간을 각 음소에 대해 나누어서 모델링하고 각 음소에 대한 Gaussian 모델과 그 음소에 해당하는 음성데이터만을 이용하여 음소별 보상벡터가 훈련되도록 하였다. 이 경우 보상벡터는 잡음이 각 음소에 미치는 영향을 보다 자세히 나타내게 된다. Aurora 2 데이터베이스를 이용한 실험결과, 제안된 방법이 기존의 SPLICE방법에 비해 성능향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.