• 제목/요약/키워드: 음성훈련방법

검색결과 136건 처리시간 0.031초

은닉 마코프 모델 확률 보정을 이용한 음성 인식 성능 향상 (Performance Improvement in Speech Recognition by Weighting HMM Likelihood)

  • 권태희;고한석
    • 한국음향학회지
    • /
    • 제22권2호
    • /
    • pp.145-152
    • /
    • 2003
  • 본 논문에서는 인식 단위로서의 개개의 은닉 마코프 모델 (HMM: Hidden Markvo Model)에 대응하는 가중치를 도입하여 HMM출력 스코어는 HMM출력 확률과 HMM 가중치의 곱으로 표현된다고 가정하고 기존의 최소 분류 오류 훈련 방법과 유사하게 HMM 가중치를 반복적으로 훈련하는 방법을 제안하였다. 제안된 방법은 오인식 척도에 대해 차분 (delta) 계수를 정의하고 이를 이용하여 HMM 가중치를 반복하여 훈련하는 방법이다. 이러한 방법은 HMM 가중치의 합을 HMM 개수의 총합으로 제한함으로써 기존의 파라미터 추정 방법과 비터비 (Viterbi) 알고리즘에 큰 변화 없이 음성 인식에 효과적으로 적용될 수 있다. 제안된 방법은 기존의 분할 (segmental) 최소 분류 오류훈련 방법과 비교하여 추정하는 파라미터의 개수가 감소되었으며 훈련 모델의 최적 상태열을 이용한 경도 계산 과정이 포함되지 않음으로써 계산량을 효과적으로 단축할 수 있다. HMM가중치를 이용한 HMM기반의 음성 인식기의 성능 평가를 위해서 단독 숫자음 인식 실험을 실시하였다. 실험적 결과들은 HMM 확률 보정을 이용한 음성 인식 시스템이 베이스라인 시스템보다 음성 인식 성능이 더 우수함을 보여준다. 제안된 방법은 기존의 최소 분류 오류 훈련 방법에 비하여 구현하기 간편한 반면에 더욱 우수한 음성 인식 성능 향상을 보여준다.

AN INTUITIONAL METHOD OF TRAINING THE DEAF IN POINTS OF ARTICULATION FOR THE CLARIFICATION OF THEIR SPEECH -HORITA'S WAFER METHOD-

  • Horita, Katsutoshi
    • 대한음성학회지:말소리
    • /
    • 제7_8호
    • /
    • pp.72-79
    • /
    • 1984
  • 이 논문은 일본의 호리따씨가 1983년 8월 고베시에서 열린 제4차 세계음성학자 대회에서 발표한 내용의 영역본이다. "음성언어의 직감적 개발"이란 부제가 붙은 "위이훠 방법"이란 호리따씨가 개발해 낸 농아와 그 밖의 언어장애자의 발음 훈련 및 교정법인데, 혀의 감각이 둔한 장애자의 혀에 종이같이 얇은 고자 조각을 붙여서 발음하게 함으로써 정확한 조음 위치를 파악하여 올바른 발음을 익히도록 하는 방법이다. 대회에서도 상당한 관심을 끈 논문이므로 우리나라의 언어치료계를 위하여 소개한다. 이 방법은 음성훈련 및 외국어의 발음교육에도 이용될 수 있을 듯 하다.

  • PDF

배우 음성 훈련을 위한 EVT 구조연습 활용방안 I (How to Use EVT Figures for Actor Voice Training I)

  • 이영수
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.136-148
    • /
    • 2021
  • 본 연구는 음성을 예술적 표현 수단의 매개체로 사용하는 배우의 연기 예술에서 음성 기관의 독립적인 조절, 제어를 가능하게 하는 에스틸 보이스 트레이닝(Estill Voice Training) 모델의 이론적 원리와 구조연습 훈련이 배우 음성 운용에 적용될 수 있는 긍정적 효용성을 탐구하는 데 그 목적이 있다. 생성기관의 원리에 기인하여 음성 산출물의 상이점을 조절하는 음성 과학적 방법론에 대한 연구는 심리와 신체를 함께 아우르는 기존의 배우 음성 훈련에 비해 국내에서 활발히 소개되지 못하고 있는 현실이다. 음성은 해부 생리학을 근간으로 우리 몸에 대한 이해가 선행될 때 운용의 정확성과 안정성을 담보할 수 있을 뿐만 아니라 더 나아가 인물 창조의 요소인 인물의 음성적 성격화에도 기여할 수 있다. 배우 음성 훈련에서 자기 수용적 감각을 통한 훈련 모델을 고찰하는 것은 배우가 일련의 목표음을 산출하는 과정에서 원리적이며 실질적인 방법론으로 모색될 수 있다는 실용적 가치와 대안적 의의를 지닌다.

음질(Voice Quality)에 관한 청지각적 훈련자료개발을 위한 기초연구

  • 심현섭
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.198-199
    • /
    • 2003
  • 최근에 음성언어장애에 대한 언어치료사의 평가 및 치료 활동이 활발히 이루어지고 있으나, 음성평가 기준 및 치료 자료가 충분치 않은 것이 현실이다. 음성 평가를 실시할 때에도 각 치료실마다 음성 평가에 사용하는 장비가 달라 결과물의 해석에 다소 차이가 있으며, 또한 같은 장비를 사용함에도 불구하고 음성 자료를 수집하는 방법에 있어서 표준화된 절차 및 자료에 따라 평가를 하지 못하고 있는 실정이다. 이러한 표준화된 측정절차에 대한 요구는 개인적인 기준으로 좌우될 수 있는 주관적인 평가에서는 더욱 절실하다. 음성의 지각적 평가에서 중요한 측면 중에 하나는 음성의 질에 정확한 판단 및 이에 대한 자료공유 및 정보교환이다. 현재 음성의 질에 대한 측정평가를 위해 제일 많이 사용되고 있는 방법 중 하나가 GRBAS 방법이 간편하여 임상적으로 많이 사용하나 음성의 질에 대한 세밀한 평가를 하는 데는 한계가 있다. 따라서 본 연구에서는 음질을 평가하는데 있어서 자주 사용되는 음질 용어에 대한 우리말 용어를 통일의 필요성의 시급한 실정에 기초하여 이를 대표할 수 있는 음성샘플 자료의 구축마련을 위한 일종의 발제이다. 이러한 작업을 통해 각 음성 및 언어치료실에서 음성의 질에 대한 청지각적 평가에 공통 기준을 마련하고, 임상교육 적인 목적으로 청지각적 훈련 자료로 이용이 가능할 수 있으리라 사료된다. (중략)

  • PDF

적은 훈련 데이터를 이용한 LSP 파라메터 기반의 화자종속 음성인식에 관한 연구 (A Speaker Dependent Speech Recognition Method Using LSP Parameters for Small Training Data)

  • 곽수주
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.373-376
    • /
    • 1998
  • 통신 수단의 발달로 휴대단말기의 사용이 증가하고 있으며, 이와 함께 휴대단말기에서의 음성인식에 대한 수요도 증가하고 있다. 휴대단말기의 경우 저 전송율을 가지는 음성 부호화기를 사용하게 되며, 이러한 저전송율의 음성 부호화기에서의 음성인식을 수행할 경우 인식 성능이 저하되는 현상을 보이게 된다. 본 논문에서는 이러한 문제를 해결하기 위하여 LSP 파라메터 기반의 거리척도에 관하여 비교 검토하였으며, 적은 훈련 데이터에서 사용 가능한 화자 종속 음성인식 방법으로 Dynamic Time Warping(DTW)과 변형된 Hidden Markov Model(HMM)에 관하여 검토하였다. QCELP 음성 부호화기에서 인식 어휘 당 2번의 훈련 데이터만을 이용한 화자종속 인식방법을 사용한 결과 95% 이상의 인식 성능을 얻을 수 있었다.

  • PDF

기계학습에 의한 후두 장애음성 식별기의 성능 비교 (Performance comparison on vocal cords disordered voice discrimination via machine learning methods)

  • 조철우;왕수건;권익환
    • 말소리와 음성과학
    • /
    • 제14권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.

어린이 음성인식을 위한 동적 가중 손실 기반 도메인 적대적 훈련 (Dynamically weighted loss based domain adversarial training for children's speech recognition)

  • 마승희
    • 한국음향학회지
    • /
    • 제41권6호
    • /
    • pp.647-654
    • /
    • 2022
  • 어린이 음성인식의 활용 분야가 증가하고 있지만, 양질의 데이터 부족은 어린이 음성인식 성능 향상의 걸림돌이 되고 있다. 본 논문은 성인의 음성 데이터를 추가로 사용하여 어린이 음성인식 성능을 개선하는 방법을 새롭게 제안한다. 제안하는 방법은 성인 학습 데이터양이 증가할수록 커지는 연령 간 데이터 불균형을 효과적으로 다루기 위해 dynamically weighted loss를 사용하여 트랜스포머 기반 도메인 적대적 훈련하는 방식이다. 구체적으로, 학습 중 미니 배치 내 클래스 불균형 정도를 수치화하고, 데이터가 적을수록 큰 가중치를 갖도록 손실함수를 정의하여 사용하였다. 실험에서는 성인과 어린이 학습 데이터 간 비대칭성에 따른 제안된 도메인 적대적 훈련의 효용성을 검증하였다. 실험 결과, 학습 데이터 내 연령 간 비대칭이 발생하는 모든 조건에서 제안하는 방법이 기존 도메인 적대적 훈련 방식보다 높은 어린이 음성인식 성능을 가짐을 확인할 수 있었다.

어휘독립 환경에서의 가변어휘 음성인식에 관한 연구 (A Study on the Variable Vocabulary Speech Recognition in the Vocabulary-Independent Environments)

  • 황병한
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.369-372
    • /
    • 1998
  • 본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.

  • PDF

한국어 음성데이터를 이용한 일본어 음향모델 성능 개선 (An Enhancement of Japanese Acoustic Model using Korean Speech Database)

  • 이민규;김상훈
    • 한국음향학회지
    • /
    • 제32권5호
    • /
    • pp.438-445
    • /
    • 2013
  • 본 논문은 일본어 음성인식기 신규 개발을 위해 초기에 부족한 일본어 음성데이터를 보완하는 방법이다. 일본어 발음과 한국어 발음이 유사한 특성을 근거로 한국어 음성 데이터를 이용한 일본어 음향모델 성능개선 방법에 대하여 기술하였다. 이종언어 간 음성 데이터를 섞어서 훈련하는 방법인 Cross-Language Transfer, Cross-Language Adaptation, Data Pooling Approach등 방법을 설명하고, 각 방법들의 시뮬레이션을 통해 현재 보유하고 있는 일본어 음성데이터 양에 적절한 방법을 선정하였다. 기존의 방법들은 훈련용 음성데이터가 크게 부족한 환경에서의 효과는 검증되었으나, 목적 언어의 데이터가 어느 정도 확보된 상태에서는 성능 개선 효과가 미비하였다. 그러나 Data Pooling Approach의 훈련과정 중 Tyied-List를 목적 언어로만으로 구성 하였을 때, ERR(Error Reduction Rate)이 12.8 %로 성능이 향상됨을 확인하였다.

음성학적인 정보를 포함한 SPLICE를 이용한 잡음환경에서의 음성인식 (Speech Recognition in Noise Environments Using SPLICE with Phonetic Information)

  • 김두희;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.83-86
    • /
    • 2002
  • 훈련과정과 인식과정에서의 주변환경 잡음과 채널 특성 등의 불일치는 음성인식 성능을 급격히 저하시킨다. 이러한 불일치를 보상하기 위해서 켑스트럼 영역에서의 다양한 전처리 방법이 시도되고 있으며 최근에는 stereo 데이터와 잡음 음성의 Gaussian Mixture Model (GMM)을 이용해 보상벡터를 구하는 SPLICE 방법이 좋은 결과를 보이고 있다(1). 기존의 SPLICE가 전체 발성에 대해서 음향학적인 정보만으로 Gaussian 모델을 구하는 반면 본 논문에서는 발성에 해당하는 음소정보를 고려하여 전체 음향 공간을 각 음소에 대해 나누어서 모델링하고 각 음소에 대한 Gaussian 모델과 그 음소에 해당하는 음성데이터만을 이용하여 음소별 보상벡터가 훈련되도록 하였다. 이 경우 보상벡터는 잡음이 각 음소에 미치는 영향을 보다 자세히 나타내게 된다. Aurora 2 데이터베이스를 이용한 실험결과, 제안된 방법이 기존의 SPLICE방법에 비해 성능향상을 보였다.

  • PDF