• Title/Summary/Keyword: 음성기반 감정인식

Search Result 71, Processing Time 0.026 seconds

Development and validation of a Korean Affective Voice Database (한국형 감정 음성 데이터베이스 구축을 위한 타당도 연구)

  • Kim, Yeji;Song, Hyesun;Jeon, Yesol;Oh, Yoorim;Lee, Youngmee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.3
    • /
    • pp.77-86
    • /
    • 2022
  • In this study, we reported the validation results of the Korean Affective Voice Database (KAV DB), an affective voice database available for scientific and clinical use, comprising a total of 113 validated affective voice stimuli. The KAV DB includes audio-recordings of two actors (one male and one female), each uttering 10 semantically neutral sentences with the intention to convey six different affective states (happiness, anger, fear, sadness, surprise, and neutral). The database was organized into three separate voice stimulus sets in order to validate the KAV DB. Participants rated the stimuli on six rating scales corresponding to the six targeted affective states by using a 100 horizontal visual analog scale. The KAV DB showed high internal consistency for voice stimuli (Cronbach's α=.847). The database had high sensitivity (mean=82.8%) and specificity (mean=83.8%). The KAV DB is expected to be useful for both academic research and clinical purposes in the field of communication disorders. The KAV DB is available for download at https://kav-db.notion.site/KAV-DB-75 39a36abe2e414ebf4a50d80436b41a.

Emotion Recognition Using Output Data of Image and Speech (영상과 음성의 출력 데이터를 이용한 감성 인식)

  • Joo, Young-Hoon;Oh, Jae-Heung;Park, Chang-Hyun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.275-280
    • /
    • 2003
  • In this paper, we propose a method for recognizing the human s emotion using output data of image and speech. The proposed method is based on the recognition rate of image and speech. In case that we use one data of image or speech, it is hard to produce the correct result by wrong recognition. To solve this problem, we propose the new method that can reduce the result of the wrong recognition by multiplying the emotion status with the higher recognition rate by the higher weight value. To experiment the proposed method, we suggest the simple recognizing method by using image and speech. Finally, we have shown the potentialities through the expriment.

Analysis of Voice Quality Features and Their Contribution to Emotion Recognition (음성감정인식에서 음색 특성 및 영향 분석)

  • Lee, Jung-In;Choi, Jeung-Yoon;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.771-774
    • /
    • 2013
  • This study investigates the relationship between voice quality measurements and emotional states, in addition to conventional prosodic and cepstral features. Open quotient, harmonics-to-noise ratio, spectral tilt, spectral sharpness, and band energy were analyzed as voice quality features, and prosodic features related to fundamental frequency and energy are also examined. ANOVA tests and Sequential Forward Selection are used to evaluate significance and verify performance. Classification experiments show that using the proposed features increases overall accuracy, and in particular, errors between happy and angry decrease. Results also show that adding voice quality features to conventional cepstral features leads to increase in performance.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Efficient Emotion Classification Method Based on Multimodal Approach Using Limited Speech and Text Data (적은 양의 음성 및 텍스트 데이터를 활용한 멀티 모달 기반의 효율적인 감정 분류 기법)

  • Mirr Shin;Youhyun Shin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.174-180
    • /
    • 2024
  • In this paper, we explore an emotion classification method through multimodal learning utilizing wav2vec 2.0 and KcELECTRA models. It is known that multimodal learning, which leverages both speech and text data, can significantly enhance emotion classification performance compared to methods that solely rely on speech data. Our study conducts a comparative analysis of BERT and its derivative models, known for their superior performance in the field of natural language processing, to select the optimal model for effective feature extraction from text data for use as the text processing model. The results confirm that the KcELECTRA model exhibits outstanding performance in emotion classification tasks. Furthermore, experiments using datasets made available by AI-Hub demonstrate that the inclusion of text data enables achieving superior performance with less data than when using speech data alone. The experiments show that the use of the KcELECTRA model achieved the highest accuracy of 96.57%. This indicates that multimodal learning can offer meaningful performance improvements in complex natural language processing tasks such as emotion classification.

Context sentiment analysis based on Speech Tone (발화 음성을 기반으로 한 감정분석 시스템)

  • Jung, Jun-Hyeok;Park, Soo-Duck;Kim, Min-Seung;Park, So-Hyun;Han, Sang-Gon;Cho, Woo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1037-1040
    • /
    • 2017
  • 현재 머신러닝과 딥러닝의 기술이 빠른 속도로 발전하면서 수많은 인공지능 음성 비서가 출시되고 있지만, 발화자의 문장 내 존재하는 단어만 분석하여 결과를 반환할 뿐, 비언어적 요소는 인식할 수 없기 때문에 결과의 구조적인 한계가 존재한다. 따라서 본 연구에서는 인간의 의사소통 내 존재하는 비언어적 요소인 말의 빠르기, 성조의 변화 등을 수치 데이터로 변환한 후, "플루칙의 감정 쳇바퀴"를 기초로 지도학습 시키고, 이후 입력되는 음성 데이터를 사전 기계학습 된 데이터를 기초로 kNN 알고리즘을 이용하여 분석한다.

Face Emotion Recognition using ResNet with Identity-CBAM (Identity-CBAM ResNet 기반 얼굴 감정 식별 모듈)

  • Oh, Gyutea;Kim, Inki;Kim, Beomjun;Gwak, Jeonghwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.559-561
    • /
    • 2022
  • 인공지능 시대에 들어서면서 개인 맞춤형 환경을 제공하기 위하여 사람의 감정을 인식하고 교감하는 기술이 많이 발전되고 있다. 사람의 감정을 인식하는 방법으로는 얼굴, 음성, 신체 동작, 생체 신호 등이 있지만 이 중 가장 직관적이면서도 쉽게 접할 수 있는 것은 표정이다. 따라서, 본 논문에서는 정확도 높은 얼굴 감정 식별을 위해서 Convolution Block Attention Module(CBAM)의 각 Gate와 Residual Block, Skip Connection을 이용한 Identity- CBAM Module을 제안한다. CBAM의 각 Gate와 Residual Block을 이용하여 각각의 표정에 대한 핵심 특징 정보들을 강조하여 Context 한 모델로 변화시켜주는 효과를 가지게 하였으며 Skip-Connection을 이용하여 기울기 소실 및 폭발에 강인하게 해주는 모듈을 제안한다. AI-HUB의 한국인 감정 인식을 위한 복합 영상 데이터 세트를 이용하여 총 6개의 클래스로 구분하였으며, F1-Score, Accuracy 기준으로 Identity-CBAM 모듈을 적용하였을 때 Vanilla ResNet50, ResNet101 대비 F1-Score 0.4~2.7%, Accuracy 0.18~2.03%의 성능 향상을 달성하였다. 또한, Guided Backpropagation과 Guided GradCam을 통해 시각화하였을 때 중요 특징점들을 더 세밀하게 표현하는 것을 확인하였다. 결과적으로 이미지 내 표정 분류 Task에서 Vanilla ResNet50, ResNet101을 사용하는 것보다 Identity-CBAM Module을 함께 사용하는 것이 더 적합함을 입증하였다.

A Study on Motion Control of the Pet-Robot using Voice-Recognition (음성인식을 이용한 반려 로봇의 모션제어에 대한 연구)

  • Ye-Jin, Cho;Hyun-Seok, Kim;Tae-Sung, Bae;Su-Haeng, Lee;Jin-Hyean, Kim;Jae-Wook, Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1089-1094
    • /
    • 2022
  • In this paper, a human coexistence-type companion robot that can communicate with people in daily life and alleviate the gap in care personnel was studied. Based on the voice recognition module, servo motor, and Arduino board, a companion robot equipped with a robot arm control function using voice recognition, a position movement function using RC cars, and a voice recognition function was tested and manufactured. As a result of the experiment, the speech recognition experiment according to distance showed the optimal recognition rate at a distance of 5 to 30 cm, and the speech recognition experiment according to gender showed a higher recognition rate in the first tone, monotonous tone. Through the evaluation results of these motion experiments, it was confirmed that a companion robot could be made.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Voice Recognition Chatbot System for an Aging Society: Technology Development and Customized UI/UX Design (고령화 사회를 위한 음성 인식 챗봇 시스템 : 기술 개발과 맞춤형 UI/UX 설계)

  • Yun-Ji Jeong;Min-Seong Yu;Joo-Young Oh;Hyeon-Seok Hwang;Won-Whoi Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.9-14
    • /
    • 2024
  • This study developed a voice recognition chatbot system to address depression and loneliness among the elderly in an aging society. The system utilizes the Whisper model, GPT 2.5, and XTTS2 to provide high-performance voice recognition, natural language processing, and text-to-speech conversion. Users can express their emotions and states and receive appropriate responses, with voice recognition functionality using familiar voices for comfort and reassurance. The UX/UI design considers the cognitive responses, visual impairments, and physical limitations of the smart senior generation, using high contrast colors and readable fonts for enhanced usability. This research is expected to improve the quality of life for the elderly through voice-based interfaces.