• Title/Summary/Keyword: 음선 이론

Search Result 19, Processing Time 0.027 seconds

A precision analysis of Baengnyeongdo Multi-beam echosounder data using acoustic ray theory (음선이론을 이용한 백령도 부근해역 다중빔 수심측량 자료의 수직.수평 오차 분석)

  • You, Seung-Ki;Joo, Jong-Min;Choi, Jee-Woong;Kim, Young-Bae;Jung, Hyun;Kim, Seo-Cheol;Park, Sung-Kyeu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.167-173
    • /
    • 2009
  • Bathymetry survey around the Baengnyeong-do was made by the Korea Hydrographic and Oceanographic Administration (KHOA), using the Simrad EM3000 Multi-Beam EchoSounder (MBES) mounted at the hull of the R/V Badaro 1. Sound velocity were monitored with frequent sound velocity profiler(SVP) casts during the acoustic measurements. The depth distribution and fluctuation of thermocline varied locally owing to the effect of several current flows such as Kuroshio current and Yellow sea coastal waters. These uncertainties cause the falling-off in accuracy of MBES results. In this paper, the bathymetry results will be presented and their accuracy will be discussed along with comparisons to the time and spatial variations in sound velocity profile.

  • PDF

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

Mid Frequency Band Reverberation Model Development Using Ray Theory and Comparison with Experimental Data (음선 기반 중주파수 대역 잔향음 모델 개발 및 실측 데이터 비교)

  • Chu, Young-Min;Seong, Woo-Jae;Yang, In-Sik;Oh, Won-Tchon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.740-754
    • /
    • 2009
  • Sound in the ocean is scattered by inhomogeneities of many different kinds, such as the sea surface, the sea bottom, or the randomly distributed bubble layer and school of fish. The total sum of the scattered signals from these scatterers is called reverberation. In order to simulate the reverberation signal precisely, combination of a propagation model with proper scattering models, corresponding to each scattering mechanism, is required. In this article, we develop a reverberation model based on the ray theory easily combined with the existing scattering models. Developed reverberation model uses (1) Chapman-Harris empirical formula and APL-UW model/SSA model for the sea surface scattering. For the sea bottom scattering, it uses (2) Lambert's law and APL-UW model/SSA model. To verify our developed reverberation model, we compare our results with those in Ellis' article and 2006 reverberation workshop. This verified reverberation model SNURM is used to simulate reverberation signal for the neighboring seas of South Korea at mid frequency and the results from model are compared with experimental data in time domain. Through comparison between experiment data and model results, the features of reverberation signal dependent on environment of each sea is investigated and this analysis leads us to select an appropriate scattering function for each area of interest.

Acoustic Characteristics of Wedge-shaped Anechoic Tiles with Different Wedge-apex Angles (꼭지각이 다른 쐐기형 무반향 타일의 음향특성)

  • 김성기;이강일;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Acoustic characteristics of the wedge-shaped anechoic tiles, used as absorbing lining materials for an anechoic water tank, were investigated for different wedge-apex angles. The anechoic tile base has the dimensions of 400mm x 385mm x 15.5mm. In order to investigate anechoic effect, the wedge-apex angles 30° and 60° were selected by using a ray-tracing method. The reflection loss of the anechoic tiles with and without wedges were experimentally studied at normal incident sound waves in water. In this experiment, the reflection loss of wedge-shaped anechoic tiles with the optimum wedge-apex angle 30° is larger than one with the angle 60° and one without wedges. The experimental results show that the wedge-shaped anechoic tiles with the wedge-apex angle 30°, optimized by using ray-tracing method, turn out better absorbing lining materials of an anechoic water tank.

  • PDF

Mid-high frequency ocean surface-generated ambient noise model and its applications (중고주파 해수면 생성 배경소음 모델과 응용)

  • Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.340-348
    • /
    • 2016
  • Ray-based model for the calculation of the ocean surface-generated ambient noise coherence function has the form of double integral with respect to a range and a bearing angle. While the theoretical consideration about its numerical implementations was partly given in the past work of authors, the numerical results on the ocean environment have not been presented yet. In this paper, we perform numerical experiments for shallow and deep water environments. It is shown that the coherence function depends on the ocean sediment sound speed, and is more sensitive to the ocean sediment sound speed in the shallow water than in the deep water. Similar trend is also observed for varying the orientation of hydrophone pair. In addition, a post-processing technique is proposed in order to plot the noise intensity for the noise receiving angle. This procedure will supplement the weakness of the ray-based model about the output data type compared to the semi-analytic model of Harrison.

Shallow Water Low-frequency Reverberation Model (천해 저주파 잔향음 예측모델)

  • 김남수;오선택;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.679-685
    • /
    • 2002
  • Low-frequency mono-static reverberation model for shallow-water environment is presented. It is necessary to develop the transmission loss model to calculate the sub-bottom interaction because the ray-based transmission loss model is difficult to compute the pressure accurately which penetrates the bottom medium. In this paper reverberation level is calculated using the RAM (Range dependent Acoustic Model) to augment the multi-path expansion model because it does not estimate transmission loss accurately in shallow water. The signals generated by the L-HYREV and the GSM are compared with the observed signals and it is showed that the L-HYREV model provides a closer fit to the observed signals than those obtained using the GSM.

Time-Domain Geoacoustic Inversion via Light Bulb Source Signal Matching (전구음원 신호를 이용한 시간영역 지음향학적 인자 역산)

  • Kim Kyungseop;Park Cheolsoo;Kim Seongil;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.334-342
    • /
    • 2005
  • In this Paper. a time-domain geoacoustic inversion was performed using the bulb signals measured during MがU. 04 experiment conducted in the East Sea of Korea in 2004. An obiective function was defined as a direct cross-correlation between the measured and the simulated signals in time domain. The ray theory was used to model the wave propagation in time domain and optimizations were Performed using VFSA (very fast simulated annealing) algorithm. Comparison of inversion results with those from transmission loss matching (an accompanying paper in this issue of the Journal of the Acoustical Society of Korea) shows that Parameters are consistently inverted. Direct time series comparisons between the measured signals and the simulated signals are Presented based on inversion results.

Mid-Frequency Bistatic Reverberation Model (중주파수 양상태 잔향음 모델)

  • Oh, Taek-Hwan;Na, Jung-Yul;Park, Chi-Hyung;La, Hyoung-Sul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.389-394
    • /
    • 2006
  • Mid-Frequency bistatic reverberation level is modeled using ray theoretic algorithms. The algorithm assumes multiple forward/backward scatter along with reciprocity in the Propagation paths. The environments modeled are assumed to be range independent in bathymetry, bottom scattering and surface scattering. Mid-Frequency bistatic scattering algorithm is used as a scattering model. A comparison of predicted reverberation versus time with measured data is presented to verify the bistatic reverberation model. The result demonstrates that it is possible to obtain reasonable reverberation Predictions in experimental site.

High-frequency Reverberation Simulation of High-speed Moving Source in Range-independent Ocean Environment (거리독립 해양환경에서 고속이동 음원의 고주파 잔향음 신호모의)

  • Kim, Sunhyo;Lee, Wonbyoung;You, Seung-Ki;Choi, Jee Woong;Kim, Wooshik;Park, Joung Soo;Park, Kyoung Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.104-115
    • /
    • 2013
  • In a shallow water waveguide, reverberation signals and their Doppler effects form the primary limitation on sonar system performance. Therefore, in the reverberation-limited environment, it is necessary to estimate the reverberation level to be encountered under the conditions in which the sonar system is operated. In this paper, high-frequency reverberation model capable of simulating the reverberation signals received by a high-speed moving source in a range independent waveguide is suggested. In this model, eigenray information from the source to each boundary is calculated using the ray-based approach and the optimizing method for the launch angles. And the source receiving position changed by the moving source is found by a scattering path-finding algorithm, which considers the speed and direction of source and sound speed to find the path of source movement. The scattering effects from sea surface and bottom boundaries are considered by APL-UW scattering models. The model suggested in this paper is verified by a comparison to the measurements made in August 2010. Lastly, this model reflects well statistical properties of the reverberation signals.

Two-dimensional Localization of Array Elements Placed on a Sea Floor Using M-sequence Signal in Multipath Ocean Environment (M-계열 송신 신호를 이용한 다중 경로 해양 환경에서의 해저면 설치 선배열 센서의 2차원 위치 추정)

  • 오택환;나정열;석동우
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.686-694
    • /
    • 2002
  • This paper proposes an algorithm for estimating positions of array elements placed on a sea floor using acoustic signal in multipath ocean environment. The positions of array elements are estimated by using the travel times of m-sequence signal influenced by the multi-paths environment. The horizontal distance between source and receiver calculated based on the ray model. The proposed paper the algorithm is verified by both simulation data and field experiment in the Bast Sea.